鈴鹿	工業高等		開講年度 平成31年度 (2	2019年度)	授	業科目	パワーエレクトロニクス				
科目基礎			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_, -^						
<u>- 1 </u>	-113112	0112		科目区分		専門 / 必修					
授業形態		授業		単位の種別と単位	立数	履修単位:					
開設学科		電気電子	工学科	対象学年 5							
開設期		後期		週時間数			2				
教科書/教	材	教科書 : トロニク	「新インターユニバーシティー パワーエレクトロニクス」掘孝正 編著オーム社,参考書:「パワーエレク ス」カサキアン,他著,赤木,他訳 日刊工業新聞社								
担当教員		橋本 良	î								
到達目標	<u> </u>										
し,機器設	錯に応用	クスで用いる することがで	られる数式,半導体の特性,パワーエレ できる. 	クトロニクス機器	を用い	た電力変換を	を行うために必要な専門知識を習得				
ルーブリ	リツク		[[[[[[[]]]]]]] [[[]]]]	無い生かもいかいきょう	ν. II ΦΕ	- 	ナかましかりの日ウ				
·			理想的な到達レベルの目安標準的な到達レベルの目安想がいる。				未到達レベルの目安				
评価項目1			パワーエレクトロニクスで用いられる数式が計算できて機器設計に応用できる.	パワーエレクト[れる基本的な数式	式が計算	草できる.	パワーエレクトロニクスで用いれる基本的な数式が計算できない。				
評価項目2			パワー半導体の特性が説明できて 機器設計に応用できる.	パワー半導体の基 明できる.	_ , , , ,	3.13.12.19.20	パワー半導体の基本的な特性が 明できない.				
評価項目3			パワーエレクトロニクス機器を用いた電力変換を機器設計に応用できる.	パワーエレクトにいた基本的な電力	コニクス り変換た	ス機器を用 が計算でき	パワーエレクトロニクス機器を いた基本的な電力変換が計算でき ない.				
学科の到	」達目標I	項目との関		•							
教育方法											
概要		を, 半導 導体によ である.	レクトロニクスは現在では欠かすことのできない技術分野であり、電力(パワー)のスイッチングや変換など体を用いた電子回路(エレクトロニクス)で行うことを取り扱う、パワーエレクトロニクスの講義では、「半る電力変換」を理解・習得するための数学的な基礎知識、および電力変換の基礎について学習することが目的								
授業の進め	方・方法	・授業は	この内容は,学習・教育到達目標(B)<専門>およびJABEE基準1(2)(d)(2)a)に対応する. は一部演習を含む講義形式で行う.講義中は集中して聴講する. 終計画」における各週の「到達目標」はこの授業で習得する「知識・能力」に相当するものとする.								
注意点		<学業成 い場合に 場合に信 くあらが などを終 などを終	の60%の得点で、目標の達成を確認できるレベルの試験を課す。 <学業成績の評価方法および評価基準>中間・学年末試験の2回の試験の平均点で評価する。ただし、60点を達成できた場合において、それを補う為の再試験を行う場合がある。このとき、再試験の成績が該当する試験の成績を上回った場合には、60点を上限として、それぞれの試験の成績を再試験の成績で置き換えるものとする。 <単位修得要件>学業成績で60点以上を取得すること。 <あらかじめ要求される基礎知識の範囲>この授業は4年次までに学習した電気回路、電子回路、半導体工学、電気機器などを総合した科目であり、これらの科目を理解している必要がある。 <レポートなど>理解を深めるため、必要に応じて演習課題を与える。 <備考>他の科目との関わりの深い分野であるので、必要に応じてそれらの教科書などを参考にして知識を深めて欲した。 で要求して、表述の表述を表述して、表述の知識を認めために常に多くの問題を解いていく姿勢が大切である。								
	 Ī	୬.									
X/\C11		週	授業内容		週ごと	の到達目標					
後期		1週	序論,パワーエレクトロニクスの学びクトロニクス時代の幕開けについて	方, 歴史, エレ	1. パ 素子な	プーエレク :どについて	トロニクスでよく利用される用語 ^も 説明できる.				
	3rdQ	2週	パワーエレクトロニクスの意味,電力 本原理	変換と制御の基	2. パワーエレクトロニクスで取り扱う範囲やその値き、身の回りでの利用状況が説明できる.						
		3週	半導体の種類,電力変換回路	3. スイッチング! デバイスの種類, - 理について説明で			による電力変換に利用される半導 それらを利用した電力変換回路の原 きる.				
		4週	ひずみ電圧・電流・電力の取り扱い		4. 非正弦波に対する計算ができ, 高調波に対する影響と対策について説明できる.						
		5週	ダイオード, サイリスタ		5. ダイオードおよびサイリスタの構造と動作原理を理解し、その種類を含めて説明できる。						
		6週	パワートランジスタ,各種デバイスの	6. トランジスタの仕組みと動作原理,使い方を理例し,各種パワー半導体デバイスの特徴を説明できる.							
		7週	スイッチングによる電力変換・損失, , デバイスを守る工夫		7. スイッチング動作による直流電圧の変換, 損失す よび交流電圧への変換法, デバイスの保護について記 明できる.						
		8週	後期中間試験	8. これまでに学習した内容を説明し,諸量を求めることができる.							
		9週	サイリスタのオンオフ、デバイスの損		9. サイリスタの実用的な利用方法について説明でる.						
		10週	スイッチングデバイスのオンオフ損失			10.スイッチングデバイスの損失について説明 ,損失の低減方法について説明できる.					
							コト.バーカにもはて古法 ノト.ガカ				

11週

12週

13週

14週

4thQ

サイリスタコンバータの原理と特徴

DC-DCコンバータの原理と特徴(1) 直流チョッパの動作

DC-DCコンバータの原理と特徴(2) 共振形コンバータの動作

DC-DCコンバータの原理と特徴(3) スイッチングレギュレータの動作

11. サイリスタコンバータにおける直流インダクタンスの作用を説明でき,様々な単相整流回路について説明できる.

13. 直流チョッパ回路の応用として共振形コンバー タについて説明できる.

14. 直流チョッパ回路の応用としてスイッチングレ ギュレータについて説明できる.

12. 直流チョッパ回路について説明できる.

		15週	15週 イン		(一夕の役割,	15. インバータ回路の特性について理解し、それを用いた電力制御法について説明できる.						
		16週]									
モデルコ	アカリ	キユラ	シムの学	2習[内容と到達	目標						
分類	分類 分		 分野		学習内容	学習内容の到達目標				到達レベル		授業週
専門的能力	分野別の専 電気・調 門工学 系分野			子	電力	半導体電力変換装置の原理と働きについて説明できる。 4						
評価割合												
試験		験	課			相互評価	態度	発表	その他	1	合計	
総合評価割合 100		00		0		0	0	0	0	100		
配点		100		0		0	0	0	0	100		