科目基礎的 科目番号 授業形態 開設学科 開設期 教科書/教材 担当教員	青報	0068																	
科目番号 授業形態 開設学科 開設期 教科書/教材		0068					金鹿工業高等専門学校 開講年度 平成30年度 (2018年度) 授業科目 光電子工学 科目基礎情報												
授業形態 開設学科 開設期 教科書/教材		0000		科目区分		専門 / 必修													
開設学科開設期教科書/教材		授業		単位の種別と単位数		履修単位: 2													
開設期 教科書/教材			1十分1																
教科書/教材		電子情報	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	対象学年 5		_													
,		後期		週時間数 4		•													
担当教員) , [改詞) , [やa	指定なし プリントを適時配布する参え J電子工学」 西村信雄、落合謙三 (ことしい光技術」(財)光産業技術振興協 版株式会社),「図説雑学 半導体」燦	(書:「基礎半導体工学」小林敏志、ロナ社),「光デバイス」Ohm Mook会 (オプトロニクス社),「見てわった。 ミアキ、大河 啓 (ナツメ社)		Ohm Mool 、「見てわ	金子双男 加藤景三(コロナ社 〈光シリーズ No.1(オーム社 かる 半導体の基礎」 高橋 清												
		青木 裕介	7																
到達目標																			
			子工学における基本的事項について理角 と基本動作の説明ができる.。	曜し,光ファイバ, 発	光デバ	イス,レーザ	- ,電子ディスプレイなどの主なオ												
ルーブリッ	ック																		
			理想的な到達レベルの目安標準的な到達レベ			D目安 未到達レベルの目安													
評価項目1			光の波動性, 粒子性に関する問題 を解くことができる.	光の波動性, 粒子性について説明 することができる.		いて説明	光の波動性, 粒子性について説明 することができない.												
評価項目2			電子と光の相互作用に関する問題を解くことができる.	電子と光の相互(することができる)	作用につ る.	いて説明	電子と光の相互作用について説明することができない.												
評価項目3			主なオプトエレクトロニック・デバイスの構造と基本動作に関する問題を解くことができる.	主なオプトエレクバイスの構造と製説明することが	基本動作		主なオプトエレクトロニック・デ バイスの構造と基本動作について 説明することができない.												
学科の到達	主目標項	目との関	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															
教育方法等																			
概要		電気信号 二クス) 信技術な ず光の波 ド,半導係	マルチメディア時代を支える基幹技術の1つとして、光電子工学(オプトエレクトロニクス)は重要な技術である。光を電気信号に変換する。あるいは電気信号を光信号に変換する技術の総称である光電子工学は、従来の電子工学(エレクトロニクス)と光工学(オプティクス)が組み合わされたもので、CDやDVDなどの光ディスクの他、光ファイバを用いた通信技術などに応用されている。本講義ではオプトエレクトロニクスの基礎について学ぶことを目的とする。 具体的にはまずたの波動性、粒子性について学ぶ、ついで電子と光の相互作用について理解を深め、光ファイバ、光導波路、発光ダイオード、半導体レーザー、電子ディスプレイなどの主なオプトエレクトロニック・デバイスの構造と基本動作を理解することを目的とする。																
授業の進め方・方法 1(2)(d)(・授業は ・「授業 <到達目			「の授業内容は、「複合型生産システム工学プログラム」学習・教育到達目標の(B) <専門>およびJABEE基準(2)aに対応する.内容を講義する. は講義形式で行う。 計画」における各週の「到達目標」は、この授業で習得する「知識・能力」に相当するものとする。 目標の評価方法と基準> 「工学に関する「知識・能力」1~18の確認を小テストおよび中間試験,定期試験で行う.1~18に関する重																
注意点		く 学業成中 試験 位策 単学 よの理学 の の で の で の で の で の で の で の で の で の で	みは同じである。合計点の60%の得点で、目標の達成を確認できるレベルの試験を課す。 <学業成績の評価方法および評価基準> 前期中間、前期末、後期中間、学年末の4回の試験の平均点を90%、小テストの得点を10%として評価する。再試験は実施しない。 <単位修得要件> 学業成績で60点以上を取得すること。 <あらかじめ要求される基礎知識の範囲> 物理学、量子力学、半導体工学、電磁気学の基本的事項は理解している必要がある。本教科は応用物理IIと電気磁気学の学習が基礎となる教科である。																
		授業で 学習時間 <備考>	〈レポート等〉 授業で保証する学習時間と、予習・復習(中間試験、定期試験、小テスト等のための学習も含む)に必要な標準的な 学習時間の総計が、90時間に相当する学習内容である。理解を深めるため、小テスト、課題を適宜与える。 〈備考〉対象が広範囲にわたるため、積極的な取り組みを期待する。疑問が生じたら直ちに質問すること。本教科は後 に学習するマイクロプロセス工学(専攻科)、センサ工学(専攻科)と強く関連する教科である。																
授業計画		11 - 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, , , <u> </u>	_ \!\\\= / &													
		週	授業内容		週ごとの	の到達目標													
	3rdQ	1週	光電子工学の概要 光の波動性(光の反射・屈折・回折・	干渉)	2. 光(電子工学の材 の波動性() 明できる.	既要を説明できる. 光の反射, 屈折, 回折, 干渉) につ												
		2週	光の粒子性(光電効果、コンプトン効態の二重性) 半導体工学の基礎(バンド理論)	果, 光及び電子	3. 光の粒子性(光電子の二重性)につ		代電効果,コンプトン効果,光及び ついて説明できる. よび金属,半導体,絶縁体の違いに												
/// #E		3週	半導体の電気伝導(伝導型, フェルミ 濃度, p-n接合) 半導体と光の相互作用(吸収と発光)	準位, キャリア	5. 半導体の電気位		云導について説明できる. 相互作用について説明できる.												
後期 3		4週	太陽電池, フォトダイオードの構造と フォトダイオードの高性能化とフォト	動作 トランジスタ	説明できる. タ 8.フォトダイオ・		オトダイオードの構造と動作原理を ードの高性能化技術とフォトトラン 作原理を説明できる.												
		5週	発光ダイオード(LED)の動作 レーザーの基本的性質(反転分布,誘用)	導放出,共振作			ドの構造と動作原理を説明できる. 基本的性質を説明できる.												
		6週	気体レーザー,液体レーザー,固体レ理 半導体レーザーの動作原理	ーザーの動作原	動作原理を説明でき		- , 液体レーザー , 固体レーザーの きる. f ーの動作原理を説明できる.												

13			_								
15. 光半導体素子製造プロセスと実装プロセス			7週	術) 光通信技術(光ファイバの原理と光ファイバを用いた			加工技術)について説明できる. 1 4 . 光ファイバの原理と光ファイバを用いた通信技				
9週			8週	中間試験			これまでに学習した内容を説明できる.				
10週			9週			セス	いて説明できる. 1 6 . エピタキシャル結晶成長技術について説明でき				
11週		4thQ	10週			極形成技術	18. エッチング技術, ドーピング技術, 電極形成技				
4thQ 12週 追記型光ディスク, 書き換え型光ディスク いて、構造とデータ書き込み,あるいは書き換えの原理を説明できる。			11週					19. 光ディスクの構造とデータ読み取りの原理を説			
13週			12週	追記型光ディスク, 書き換え型光ディスク 光入出力装置(レーザーブリンタ)			いて,構造とデータ書き込み,あるいは書き換えの原 理を説明できる.				
14週 電子ディスプレイ (RBIディスプレイ) 電子ディスプレイ) 電子ディスプレイ (E L ディスプレイ) (E L ディスプレイ) の原理を説明できる. 25. 無期EL, 有機ELの発光の原理とELディスプレイ の原理を説明できる. 15週 有機太陽電池 光電子工学の今後の展望 16週 26. 有機太陽電池の構造と動作原理を説明できる. 27. 光電子工学の今後の展望について説明できる. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27			13週	電子ディスプレイ(ブラウン管ディスプレイ,ブラズ			23. ブラウン管ディスプレイ, プラズマディスプレ				
15週 光電子工学の今後の展望 2 7. 光電子工学の今後の展望について説明できる。 16週 16週 日週 日週 日週 日週 日週 日週 日週			14週	電子ディスプレイ(液晶ディスプレイ) 電子ディスプレイ(ELディスプレイ)			1 2 5 無期FI 有機FI の発光の原理とFI ディスプレイ				
モデルコアカリキュラムの学習内容と到達目標 分類 分野 学習内容 学習内容の到達目標 到達レベル 授業週 評価割合 試験 発表 レポート 小テスト 平常点 その他 合計 総合評価割合 90 0 10 0 0 100			15週								
分類 分野 学習内容 学習内容の到達目標 到達レベル 授業週 評価割合 試験 発表 レポート 小テスト 平常点 その他 合計 総合評価割合 90 0 10 0 0 100			16週								