舞鶴工業高等専門学校		開講年度	平成30年度 (2018年度)		授業科目	建設システム工学実験IA		
科目基礎情報								
科目番号	0171			科目区分	専門/必	修		
授業形態	実験・実習			単位の種別と単位数	数 履修単位	履修単位: 1		
開設学科	建設システム	工学科		対象学年	3	3		
開設期	前期			週時間数	2	2		
教科書/教材	土質試験 -基本と手引き-[第2回改訂版](地盤工学会), 建設材料実験教育研究会「建設材料実験法」(鹿島出版会)							
担当教員	加登 文学,徳永 泰伸,毛利 聡,粟野 周一							
到達日煙								

到達目標

- 1 土粒子の密度試験,液性限界・塑性限界試験,粒度試験について理解し,実験できる。 2 透水試験,締固め試験について理解し,実験できる。 3 土の工学的分類について説明できる。 4 骨材のふるい分け試験,密度,吸水率試験について理解し,実験できる。 5 コンクリートの配合設計ができる。 6 鋼材の強度特性が理解できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	土粒子の密度試験,液性限界・塑性限界試験,粒度試験について整理・考察できている。	土粒子の密度試験,液性限界・塑性限界試験,粒度試験について理解し,実験できている。	土粒子の密度試験,液性限界・塑性限界試験,粒度試験について理解していない。
評価項目2	透水試験,締固め試験について整理・考察できている。	透水試験,締固め試験について理解し,実験できている。	透水試験,締固め試験について理解していない。
評価項目3	土の工学的分類について説明でき ている。	土の工学的分類について理解している。	土の工学的分類について説明でき ていない。
評価項目4	骨材のふるい分け試験,密度,吸水率試験について理解し,実験の実施,結果の整理,考察ができている。	骨材のふるい分け試験,密度,吸 水率試験について理解し,実験で きている。	骨材のふるい分け試験,密度,吸水率試験について理解していない。
評価項目5	コンクリートの配合設計と試し練りについて概要を理解し,設計 ,実験の実施,結果の整理,考察 ができている。	コンクリートの配合設計と試し練りについて概要を理解し,実験できている。	コンクリートの配合設計と試し練りについて概要を理解していない。
評価項目6	鋼材の引張強度試験について概要 を理解し,実験の実施,結果の整 理,考察ができている。	鋼材の引張強度試験について概要 を理解し,実験できている。	鋼材の引張強度試験について概要 を理解していない。

学科の到達目標項目との関係

学習・教育到達度目標 (D) 学習・教育到達度目標 (I)

数音方法等

概要	土の基本的性質,力学的性質に関する室内試験を行い,試験方法や試験結果の整理方法を習得する。また,建設構造物に用いられるセメントコンクリートおよび鋼材に関する室内試験を行い,物理的・化学的・力学的性質を試験によって確かめ,それらの基本性質を理解する。
授業の進め方・方法	実験は班ごとに行う。実習服を着用すること。 受講生を土質実験グループと材料実験グループの2グループに分け,実験シリーズごとに入れ替わり実験・実習を行う (シラバスの「授業計画」にはある班のスケジュール例を示している)。
注意点	【成績の評価方法・評価基準】 到達目標に基づき,実験レポートと実習態度を総合して成績評価を行う。 【備考】 実習服を着用すること。 【教員の連絡先】 研究室 A棟2階 (A-215 加登)、(A-219 毛利) 内線電話 8895 (加登)、8984 (毛利) e-mail: katoアットマークmaizuru-ct.ac.jp、s.mouriアットマークmaizuru-ct.ac.jp(アットマークは@に変えること)

授業計画

[[[]]] [[]] [[]] [[]] [[]]	<u> </u>						
		週	授業内容	週ごとの到達目標			
		1週	シラバスの内容の説明,実施実験の説明,データ整理 方法,レポートのまとめ方	1 土粒子の密度試験,液性限界・塑性限界試験,粒度 試験について理解し、実験できる。 2 透水試験,締固め試験について理解し、実験できる。 3 地盤調査について理解している。 4 骨材のふるい分け試験,密度,吸水率試験について 理解し、実験できる。 5 コンクリートの配合設計ができる。 6 鋼材の強度特性が理解できる。			
前期	前期 1stQ	2週	粗骨材の密度試験・吸水率試験・単位容積質量試験	4 骨材のふるい分け試験,密度,吸水率試験について 理解し,実験できる。			
		3週	細骨材・粗骨材のふるい分け試験	4 骨材のふるい分け試験,密度,吸水率試験について 理解し,実験できる。			
		4週	コンクリートの配合設計演習	5 コンクリートの配合設計ができる。			
		5週	コンクリートの配合設計演習	5 コンクリートの配合設計ができる。			
		6週	土粒子密度試験	1 土粒子の密度試験, 液性限界・塑性限界試験, 粒度 試験について理解し, 実験できる。			
		7週	粒度試験	1 土粒子の密度試験, 液性限界・塑性限界試験, 粒度 試験について理解し, 実験できる。			

	8週		液性	艮界・塑性限界			1 土粒子の密度試験, 液性限界・塑性限界試験, 粒度 試験について理解し, 実験できる。				
		9週	週 締固				2 透水試験,締固め試験について理解し,実験できる				
		10退			 コンクリートのフレッシュ性状評価と供試体作製			•			
		11退]				6 鋼材の強度特性が理解できる。				
	2ndQ	12退	1	コンクリート梁供試体の作製			5 コンクリートの配合設計ができる。				
	inuQ	13退	3週 透		秀 水試験			2 透水試験,締固め試験について理解し,実験できる			
		14週		工学的分類				。 3 土の工学的分類について説明できる。			
	15			演習							
		16追 -		777 2121							
モデルコアカリキュラムの学									70.±1 -3.11	1427117712	
分類			分野			学習内容の到達目標 物理、化学、情報、工学における基礎的な原理や現象を明らかに するための実験手法、実験手順について説明できる。			到達レベル 4	前1	
						実験装置や測定器の扱を身に付け、安全	正しい取	4	前1		
			工学実験 術(各種) 方法、デ				誤差解析、有効	桁数の評価、整理の	仕方、考	4	前1
					工学実験技術(各種測定		は考察ができる。	定結果の妥当性など		4	前1
基礎的能力	工学基礎	k				実験ノートや実験し 践できる。	ノポートの記載方	法に沿ってレポート	作成を実	4	前1
		į	夕処埋、 察方法`	、考)	夕処埋、考 察方法)	実験データを適切な	なグラフや図、表	など用いて表現でき	る。	4	前1
		ľ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	30312)	実験の考察などに必	必要な文献、参考	資料などを収集でき	る。	4	前1
								配慮して実践できる		4	前1
						個人・複数名での実験・実習であっても役割を意識して主体的に 取り組むことができる。				4	前1
					1 1	共同実験における基本的ルールを把握し、実践できる。				4	前1
						レポートを期限内に提出できるように計画を立て、それを実践できる。				4	前1
	分野別の 門工学	分野別の専 理設系 理工学		分野	材料		リートに求められ (手)を説明できる。	に求められる性質(ワーカビリティー、 部のできる。			前10,前12
	-		建設系分野 【実験・実 習能力】		1	骨材のふるい分け試験について理解し、器具を使って実験できる。				4	前3
						- 骨材の密度、吸水率 る。	4	前2			
						コンクリートのスランプ試験について理解し、器具を使って実験できる。				4	前10,前12
		3		分野・宝	建設系【実	コンクリートの空気 きる。	4	前10,前12			
						土粒子の密度試験に	4	前6			
						液性限界・塑性限界試験について理解し、器具を使って実験できる。				4	前8
市田ルル						粒度試験について理	4	前7			
専門的能力	分野別の工 学実験・実					透水試験について理解し、器具を使って実験できる。				4	前13
	習能力					突固めによる土の締固め試験について理解し、器具を使って実験 できる。				4	前9
						実験の目的と方法を説明できる。				4	
			Z妻祭で 八田		Ī	建築に用いる構造材料(例えば木、コンクリート、金属など)の物理的特性を実験により明らかにすることができる。				4	前2,前3,前
						実験結果を整理し、考察できる。				4	4,前5 前2,前3,前 4,前5
			建築系名 【実験 習能力】	剣・実		実験の目的と方法を説明できる。				3	前10,前 11,前12
						構造材料(例えば木、コンクリート、金属など)によるいずれかの 構造形式(ラーメン、トラスなど)の試験体を用い、載荷実験を行 い、破壊形状と変形の性状を観察することができる。				3	前11
					<u> </u>	に、 収壊がれる変形の性状を観察することができる。 実験結果を整理し、考察できる。			3	前10,前11	
評価割合											,
試験発表			表	相互評価	態度	ポートフォリオ	その他	合	<u> </u>		
総合評価割合 0			0		0	0	100	0	10	0	
基礎的能力	基礎的能力 0			0		0	0	0	0	0	
専門的能力	0			0		0	0	100	0	10	0
分野横断的能力 0 0						0	0	0	0	0	