明石工業高等専門学校		開講年度	平成31年度 (2	019年度)	授業科目	設計製図IV A		
科目基礎情報								
科目番号	0085			科目区分	専門 / 必	専門 / 必修		
授業形態	実習			単位の種別と単位数	学修単位	: 2		
開設学科	機械工学科			対象学年	4	4		
開設期	前期			週時間数	2	2		
教科書/教材	配布プリント軸受、歯車参考カタログ							
担当教員	史 鳳輝							
到達日標								

- (1) 歯車、軸受、軸等の各種の機械要素によって構成される代表的な回転機械である2段3軸歯車減速機の企画、設計、製図を通じて機械加工までの設計プロセスを学習することができる。
 (2) はすば歯車減速機の企画と設計計算書の作成を行い、設計計算書の重要性を認識し、性能を満足する構造、形、寸法を各自創造性をもって計画、設計製図し、一環した機械の設計技術を習得するすることができる。
 (3) 機械要素設計法と製図法を駆使しなければならず、復習指導を通じて反復し自主的に設計推進を図らせると共に設計参考資料も駆使、機械設計参考例も駆使する手法も教育し納期の重要性等幅広い設計の考え方を学び、継続的学習の必要性と手法を習得させることができる。

ルーブリック

ループリック			
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	歯車、軸受、軸等の各種の機械要素によって構成される代表的な回転機械である2段3軸歯車減速機の企画、設計、製図を通じて機械加工までの設計プロセスを学習することが十分できる。	歯車、軸受、軸等の各種の機械要素によって構成される代表的な回転機械である2段3軸歯車減速機の企画、設計、製図を通じて機械加工までの設計プロセスを学習することができる。	歯車、軸受、軸等の各種の機械要素によって構成される代表的な回転機械である2段3軸歯車減速機の企画、設計、製図を通じて機械加工までの設計プロセスを学習することができない。
評価項目2	はすば歯車減速機の企画と設計計算書の作成を行い、設計計算書の重要性を認識し、性能を満足する構造、形、寸法を各自創造性をもって計画、設計製図し、一環した機械の設計技術を習得するすることが十分できる。	はすば歯車減速機の企画と設計計算書の作成を行い、設計計算書の重要性を認識し、性能を満足する構造、形、寸法を各自創造性をもって計画、設計製図し、一環した機械の設計技術を習得するすることができる。	はすば歯車減速機の企画と設計計算書の作成を行い、設計計算書の重要性を認識し、性能を満足する構造、形、寸法を各自創造性をもって計画、設計製図し、一環した機械の設計技術を習得するすることができない。
評価項目3	機械要素設計法と製図法を駆使しなければならず、復習指導を通じて反復し自主的に設計推進を図しせると共に設計参考資料も駆使、機械設計参考例も駆使する手法も教育し納期の重要性等幅広い習の考え方を学び、継続的学習が必要性と手法を習得させることが十分できる。	機械要素設計法と製図法を駆使しなければならず、復習指導を通じて反復し自主的に設計推進を図使、 せると共に設計参考資料も駆使、機械設計参考例も駆使する手法計 教育し納期の重要性等幅広い設の考え方を学び、継続的学習の必要性と手法を習得させることができる。	機械要素設計法と製図法を駆使しなければならず、復習指導を通じて反復し自主的に設計推進を図使せると共に設計参考資料も駆使する手法を関し、機械設計参考例も駆使する手法も教育し納期の重要性等幅広い設別の考え方を学び、継続的学習の必要性と手法を習得させることができない。

学科の到達目標項目との関係

学習・教育到達度目標 (D) 学習・教育到達度目標 (F) 学習・教育到達度目標 (G)

教育方法等

37(13) - 1-13	
概要	歯車、軸受、軸等の各種の機械要素によって構成される代表的な回転機械である2段3軸歯車減速機の企画、設計、製図を通じて機械加工までの設計プロセスを学習する。前期には設計に必要な技術計算の講義を通じて機械設計の有り方について学び、歯車減速機の企画と設計計算書の作成を行い、設計計算書の重要性を認識する。後期には与えられた性能を満足するよう与えられた方法で、構造、形、寸法を各自創造性をもって計画、AutoCAD Mechanicalを用いて設計製図し、一環した機械の設計技術を習得する。 この科目は企業で機械設計を担当している教員が、その経験を活かし、はすば歯車減速装置設計を実例とし、はすば歯車、軸、転がり軸受など機械要素計算設計方法について講義や演習の形式で授業を行うものである。
授業の進め方・方法	歯車、軸受、軸等の各種の機械要素によって構成される代表的な回転機械である2段3軸歯車減速機の企画、設計、製図を通じて機械加工までの設計プロセスを学習する。設計に必要な技術計算の講義を通じて機械設計の有り方について学び、はすば歯車減速機の企画と設計計算書の作成を行い、設計計算書の重要性を認識する。各自に与えられるはすば歯車減速機設計仕様に基づく、2段3軸はすば歯車減速機の設計計算書を完成する。
	大利日は、授業で保証する学習時間と、予習・復習及び課題し、ポート作成に必要が標準的から己学習時間の総計が

注意点

本科目は、授業で保証する学習時間と、予習・復習及び課題レポート作成に必要な標準的な自己学習時間の総計が、90時間に相当する学習内容である(1)設計計算書は何故必要か理解し、他人に判る計算書の書き方を学ぶ。(2)アイデアも取り入れ、トライ&エラーを繰り返し目的の仕様にする創造力の重要性を学ぶ。(3)納期の重要性を認識する。 合格の対象としない欠席条件(割合) 1/4以上の欠課

授業計画

1人不口 巨	7						
		週	授業内容	週ごとの到達目標			
	1stQ	1週	伝達動力の設計技術および回転機械と関連設計技術	機械の定義と歯車減速機の関連、及び機械製作プロセスおよび駆動軸の伝達動力計算法、効率の考え方が習得できる。			
		2週	駆動軸の強度設計技術	回転軸とした軸の強度、キー固定設計手法が習得できる			
		3週	駆動軸の荷重支承認設計技術	軸に作用する合力、分力、の外力算定法が習得できる 。			
		4週	軸受に関する選定、計算技術	各種転がり軸受の考え方、選定法を習得できる。			
前期		5週	軸受に関する選定演習	軸受寿命、軸受選定を計算、カタログにより選定する方法が習得できる。			
		6週	はすば歯車の基本設計技術	はすば歯車の荷重、軸に作用する力の分析・解析ができる			
		7週	はすば歯車の強度計算技術	はすば歯車の強度計算の解説,設計仕様を決定し,はすば減速装置設計の推進ができる。			
		8週	中間試験				
	2ndQ	9週	設計計算書の作成(1)	与えられた仕様に基づく各歯車のモジュール、幅など 設計できる。			
		10週	設計計算書の作成(2)	各はすば歯車の寸法、中心距離、ねじれ角等を計算し 、簡略図を完成する。			

	-							1				
		11退		設計計算書の作成(3)				歯車、軸、軸受等の軸系に作用する各荷重を解析する ことができる。				
		12退	E E	設計計算書の作成(4)			作用力より各軸の形状設計を行い、ポイントを説き各 人概要図としてまとめることができる。					
13週			記録は管理の作式(こ)					作用力より回転軸を支える軸受設計をし、転がり軸受				
	-	14退	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			(6)	記計なが設守された機械の書					
	-	15退					:成 :3D図面を作図推進	『風歴表』の概要因が下風できる。 完成された設計計算書に基づく、はすば歯車減速装置 の立体図が完成できる。				
		16退			<u>/ </u>	円心いり	の日本は、日本の一	の立体区が光波できる。	CC0.			
エデルコー					内容と到達	- 日栂						
<u> </u>	ハカシエ		<u>ノムリナ</u> 分野		学習内容		<u>、</u> 内容の到達目標		到達レベル	授業週		
)) AR		77 11		, 6, 10	図面の役割と種類を適用できる。			4	以未迟			
						製図用具を正しく使うことができる。			4			
						線の種類と用途を説明できる。			4			
						物体の投影図を正確にかくことができる。			4			
						製作図の書き方を理解し、製作図を作成することができる。			4			
					 製図	公差と表面性状の意味を理解し、図示することができる。			4			
						部品のスケッチ図を書くことができる。			4			
						CADシステムの役割と基本機能を理解し、利用できる。			4			
======================================	分野別の	専	1661よご ハ	系分野		ボルト・ナット、軸継手、軸受、歯車などの機械要素の図面を作成できる。			4			
専門的能力	分野別の 門工学		饿쌦糸刀			歯車減速装置、手巻きウインチ、渦巻きポンプ、ねじジャッキが どを題材に、その主要部の設計および製図ができる。			4			
					機械設計	標準規格の意義を説明できる。			4			
						許容応力、安全率、疲労破壊、応力集中の意味を説明できる。			4			
						標準規格を機械設計に適用できる。			4			
						軸の種類と用途を理解し、適用できる。			4			
						軸の強度、変形、危険速度を計算できる。			4			
						キーの強度を計算できる。			4			
						軸継手の種類と用途を理解し、適用できる。			4			
						転が	り軸受の構造、種類、寿命を認	説明できる。	4			
評価割合												
試験図面・計算				図面・計算書	演習課題	計						
総合評価割合			20				60	20 1	100			
基礎的能力		0	<u>- </u>			•	•	0				
専門的能力			20	20			60	20 1	.00			