	工業高等	 専門学校		開講年度	令和02年度 (2	 (020年度)	拇	 業科目	電気回路Ⅱ		
科目基礎		<u> </u>		<u> </u>	13/1 <u>102</u>	.020+1 <u>0</u>	1 12	<u>.*1111</u>			
科目番号	(O)34					科目区分 専門 / 必修			修		
授業形態		講義				単位の種別と単位数 学修単位:					
開設学科		電気情報	工学	———————— 科		対象学年 2		2			
開設期		通年			週時間数 2		2				
教科書/教	材	加藤政一	: [≢	門基礎ライブ	ラリー 電気回路 改						
担当教員		梶村 好笼	2								
到達目標	Ę										
評価項目2 評価項目3 評価項目4 評価項目5	: 瞬時値、 : 有効電力 : 相互誘導 : 三相交流	フェーザ、社 、無効電力、 回路の仕組む	復素数 、力≥ みをi	数表示を理解し 率の測定原理と 説明でき、回路	電圧と電流の関係を 、説明でき、これら その方法を説明し、 の電圧、電流等の言 線間電圧、線電流)	5を正弦波交流回版 計算ができる。 †算ができる。	路の計算	草に用いる	算に用いることができる。 ことができる。		
ルーブリ	リック										
			-	理想的な到達レ/	標準的な到達レベルの目安			未到達レベルの目安			
評価項目1			Į.	らける電圧と電流	コンデンサ素子に 流の関係を理解し 用計算に用いるこ	抵抗、コイル、コンデンサ素子に おける電圧と電流の関係を理解し 、電気回路の計算に用いることが できる。		系を理解し	おける電圧と電流の関係を理解し		
評価項目2			珥	Ľ解し、これら を	げ、複素数表示を を正弦波交流回路 いることができる	理解し、これら	寺値、フェーザ、複素数表示を 解し、これらを正弦波交流回路 †算に用いることができる。		瞬時値、フェーザ、複素数表示を 理解し、これらを正弦波交流回路 の計算に用いることができない。		
評価項目3			月	育効電力、無効電理とその方法で を解くことができ	電力、力率の測定 を説明でき、問題 きる。	有効電力、無効電力、力率の測定 原理とその方法を説明できる。			有効電力、無効電力、力率の測定 原理とその方法を説明できない。		
評価項目4			相応	互誘導回路等の 5月計算ができる	D電圧、電流等の る。	相互誘導回路等の電圧、電流等を 計算できる。		電流等を	相互誘導回路等の電圧、電流等を 計算できない。		
評価項目5			1電	E相交流における 3圧、線間電圧、 †算ができる。	5電圧・電流(相 線電流)の応用	三相交流における電圧・電流(相 電圧、線間電圧、線電流)の計算 ができる。		・電流(相 流)の計算	三相交流における電圧・電流(相 電圧、線間電圧、線電流)の計算 ができない。		
学科の到	」達目標項	目との関	係								
				到達度目標 (F)						
教育方法	 等										
概要 電気・電子工学の基礎となる交流回路理論について、電圧や電流、インピーダンスなどの物理量の意味や用途について 説明でき、計算できることを到達目標とする。また、練習問題等の演習を行って習得の手助けとする。											
授業の進め方・方法 教科書に沿って、解説を行う。スライド資料や練習問題用のプリントを配布しながら進める。定期的に演習問題のレポートを課す。											
本科目は、授業で保証する学習時間と、予習・復習及び課題レポート作成に必要な標準的な自己学習時間の総計が、 180時間に相当する学習内容である。定期試験(80%)、授業中の演習問題プリントを含めたレポート課題(20%)を総合 して評価する。レポートは、章末の問題を中心に出題する。総合60%以上達成したものを合格とする。 合格の対象としない欠席条件(割合) 1/3以上の欠課											
授業計画	 Ū										
				受業内容			週ごとの到達目標				
		1週 電気数学演習 I 微分、複素数の計算ができる。									
	1										

授業計画	画			
		週	授業内容	週ごとの到達目標
		1週	電気数学演習 I	微分、複素数の計算ができる。
		2週	電気数学演習 II	積分の計算ができる。
		3週	正弦波交流、平均値	正弦波交流を理解し、平均値を計算できる。
	1.c+O	4週	実効値	実効値を計算できる。
	1stQ	5週	抵抗回路	抵抗回路の電流を求めることができる。
		6週	インダクタンス回路	インダクタンス回路の電流を求めることができる。
		7週	静電容量回路	静電容量回路の電流を求めることができる。
		8週	中間試験	
前期		9週	R-L回路	R-L回路の電流を求めることができる。
		10週	R-C回路	R-C回路の電流を求めることができる。
		11週	R-L-C回路ベクトル記号法の基礎	R-L-C回路の電流を求めることができる。
	2240	12週	ベクトル記号法の基礎 I	ベクトル記号法の意味を理解し、交流電圧を記号であらわす。
	2ndQ	13週	ベクトル記号法の基礎 II	ベクトル記号法で交流回路の計算ができる。
		14週	インピーダンス・アドミタンス I	インピーダンス・アドミタンス を計算できる。
		15週	インピーダンス・アドミタンス II	複雑な回路のインピーダンス・アドミタンス を計算できる。
		16週	期末試験	
		1週	複素電力	複素電力の計算ができる。
		2週	ベクトル図	ベクトル図を書くことができる。
後期	3rdO	3週	ブリッジ回路	ブリッジ回路を理解し、平衡条件を導くことができる。

相互誘導回路の意味と等価回路を書くことができる。

相互誘導回路の等価回路における電流を計算できる。

相互誘導回路の等価回路における電流を計算できる。

3rdQ

4週

5週

6週

相互誘導回路

相互誘導回路の等価回路 I

相互誘導回路の等価回路 II

後期

		7週	タカスングの発生	と星形および環状結線	多相交流の発生と星形および	ド環状結線を 診	 鋭明すること	
				(全形のよび染化和豚	ができる。			
		8週 9週	中間試験 多相交流の記号	まこ と切向転	タカウングの東口 東次を計算	エオスマレがフ		
		10週	Y接続の相電圧と		多相交流の電圧、電流を計算することができる。 Y接続の相電圧と線間電圧を計算することができる。			
		11週	△接続の相電流と線電流		Y接続の相電圧と緑面電圧を計算することができる。 Δ接続の相電流と線電流を計算することができる。			
		12週	Δ接続とY接続お		Δ接続とY接続およびΔY変換			
	4thQ	13週	多相交流電力	00100	。 タ切六次電力を計算するスプ	・ガブキス		
	Tang			1 1 ATT 114 + TEX	多相交流電力を計算すること 非正弦波とフーリエ級数の意		ことができる	
		14週	非正弦波とフー	リエ級数の基礎	0			
		15週	フーリエ係数の質	算出法、奇関数波のフーリエ級数展開 	フーリエ係数の算出法、奇関ができる。	数波のフーリ	リエ級数展開	
		16週	期末試験					
	アカリキ)学習内容と到			T-13+1	12.WY.	
分類	1	分野	学習内容	学習内容の到達目標	上 パ元 ナフ	到達レベル		
				整式の加減乗除の計算や、式の展開	かぐさる。	3	前1,前2 前1,前2,前	
				分数式の加減乗除の計算ができる。		3	3,前4	
				実数・絶対値の意味を理解し、絶対	値の簡単な計算ができる。	3	前1,前2,前 3,前4	
				平方根の基本的な計算ができる(分配)	3	前1,前2,前 3,前4		
				複素数の相等を理解し、その加減乗	ーーーー 除の計算ができる。	3	前1,前2,前 3,前4	
				解の公式等を利用して、2次方程式	解の公式等を利用して、2次方程式を解くことができる。			
		数学		簡単な連立方程式を解くことができ	3	前1,前2,後 10		
				2次関数の性質を理解し、グラフを対 小値を求めることができる。	3	前1,前2,後 6		
				累乗根の意味を理解し、指数法則を拡張し、計算に利用することができる。		3	前1,前2,前 12,前13	
				指数関数を含む簡単な方程式を解くことができる。		3	前1,前2,前 12,前13	
				対数の意味を理解し、対数を利用し	3	前1,前2,前 12,前13		
				角を弧度法で表現することができる。		3	前1,前2	
				三角関数の性質を理解し、グラフを	3	前1,前2		
	数学		数学	加法定理および加法定理から導出さる。	3	前1,前2		
				三角比を理解し、簡単な場合についきる。	3	前1,前2		
				一般角の三角関数の値を求めること	ができる。	3	前1,前2	
基礎的能力				簡単な場合について、円の方程式を	求めることができる。	3	後2	
				ベクトルの定義を理解し、ベクトル数倍)ができ、大きさを求めることが	の基本的な計算(和・差・定 ができる。	3	前13,後2	
				行列式の定義および性質を理解し、ことができる。		3	後6	
				平面内の回転に対応する線形変換を	表す行列を求めることができ	3	後2	
				る。 微分係数の意味や、導関数の定義を	理解し、導関数を求めること	3	前2,前3	
				ができる。			<u> </u>	
				三角関数・指数関数・対数関数の導関数を求めることができる。 関数の増減表を書いて、極値を求め、グラフの概形をかくことが		3	前2,前3	
				できる。		3	後2	
				2次の導関数を利用して、グラフの凹凸を調べることができる。		3	後2	
				不定積分の定義を理解し、簡単な不定積分を求めることができる。		3	後14,後15	
				定積分の定義と微積分の基本定理を理解し、簡単な定積分を求ることができる。		3	後14,後15	
				簡単な場合について、曲線で囲まれることができる。	3	後14,後15		
				平均の速度、平均の加速度を計算す	2	前3		
			力学	周期、振動数など単振動を特徴づけ	3	前3		
	自然科学			。 波の振幅、波長、周期、振動数、速	3	前3		
		物理	11/2	電場・電位について説明できる。	3	前5		
				オームの法則から、電圧、電流、抵抗に関する計算ができる。		3	前5	
			電気	抵抗を直列接続、及び並列接続したときの合成抵抗の値を求める		3	前5	
	1			ことができる。 ジュール熱や電力を求めることがで	3	1		

				電荷と電流 電圧	 を説明できる			3	前5
				電荷と電流、電圧を説明できる。				3	前5
				オームの法則を説明し、電流・電圧・抵抗の計算ができる。 ブリッジ回路を計算し、平衡条件を求められる。			4	後3	
								4	後1
				電力量と電力を説明し、これらを計算できる。 正弦波交流の特徴を説明し、周波数や位相などを計算できる。				4	前3
							<u>. c る。</u>	4	前3,前4
				平均値と実効値を説明し、これらを計算できる。 正弦波交流のフェーザ表示を説明できる。				4	前12
								4	
				R、L、C素子における正弦波電圧と電流の関係を説明できる。			4	前5,前6,前	
			電気回路	瞬時値を用いて、	交流回路の計算か	ができる。		4	前5,前6,前 7
				フェーザ表示を用いて、交流回路の計算ができる。			4	前11	
専門的能力	分野別の専 門工学	電気・電子	=	インピーダンスとアドミタンスを説明し、これらを計算できる。			4	前14,前15	
131 31 31307 3	门工子	系分野		キルヒホッフの法	則を用いて、交流	記回路の計算ができる	5.	4	前9,前14
				合成インピーダン 計算ができる。	スや分圧・分流の)考え方を用いて、交	流回路の	4	前15
				相互誘導を説明し)計算ができる。		4	後4,後5
				理想変成器を説明できる。				4	後6
				空間を開始している。 				4	後1
							売) を説明		
				三相交流における電圧・電流(相電圧、線間電圧、線電流)を説明 できる。				4	後9
			電力	電源および負荷のΔ-Y、Y-Δ変換ができる。			4	後10,後 11,後12	
				対称三相回路の電圧・電流・電力の計算ができる。			4	後13	
				変圧器の原理、構造、特性を説明でき、その等価回路を説明できる。			4	後5	
		羽田的技能	: 汎用的技能	他者とコミュニケーションをとるために日本語や特定の外国語で 正しい文章を記述できる。			3	前15,後15	
				円滑なコミュニケーションのために図表を用意できる。				3	前15,後15
				円滑なコミュニケーションのための態度をとることができる(相 づち、繰り返し、ボディーランゲージなど)。				3	前15,後15
	 汎用的技能			他者の意見を聞き合意形成することができる。				3	後15
	// 0/ 13 = 33 \ 100	טנו אני ביינו שייי	, , , , , , , , , , , , , , , , , , , ,	合意形成のために会話を成立させることができる。				3	後15
				グループワーク、ワークショップ等の特定の合意形成の方法を実践できる。				3	前15,後15
				書籍、インターネット、アンケート等により必要な情報を適切に 収集することができる。				3	前15,後15
分野横断的				自らの考えで責任を持ってものごとに取り組むことができる。				2	前1,後15
能力			態度・志向性	目標の実現に向けて計画ができる。				2	前1,後15
				目標の実現に向けて自らを律して行動できる。				2	前1,後15
				日常の生活における時間管理、健康管理、金銭管理などができる				2	前1,後15
		態度・志向 性		0				-	
	態度・志向 性(人間力)			チームで協調・共同することの意義・効果を認識している。				2	前1,前 15,後15
				チームで協調・共同するために自身の感情をコントロールし、他者の意見を尊重するためのコミュニケーションをとることができる。				2	前1,前15
				当事者意識をもってチームでの作業・研究を進めることができる				2	前15,後15
				<u>・</u> チームのメンバーとしての役割を把握した行動ができる。				2	前15,後15
評価割合	!	!		1:					1.22271213
一门川台 口	<u>=</u> +⊪2		 ※主	担方≕≠		#_ \ 7 + 11 +	ス の細		合計
公本部/エ軸/	試験		発表 、	相互評価	レポート	ポートフォリオ	その他		
総合評価割合		(0	20	0	0		100
基礎的能力	0	(0	0	0	0		0
専門的能力	80	(0	20	0	0		100
分野横断的能	もう 0	()	0	0	0	0		0