明石	工業高等	専門学校	開講年度	開講年度 平成31年度 (2019年度)		授	業科目	コンピュータシミュレーショ ン			
科目基础	楚情報	_					_				
科目番号	目番号 0061						専門/選技	R			
授業形態		講義		単位の種別と単位	数	学修単位:	2				
開設学科		電気情報	工学科(情報工学二	対象学年		5					
開設期		後期		週時間数		2					
教科書/教	树	田中敏	幸:「数値計算法基础	楚」, コロナ社							
担当教員		上泰									
到達目	 票	•									
2. アルニ	ゴリズムにつ	いて.オー⁄	差について, その原 ダを導出できる. 解を求める手法(ムを実装できる.		説明できる.						
ルーブ!	リック										
			理想的な到達レ	標準的な到達レベ	IJレのE	ョ安	未到達レベルの目安				
数値計算	における誤え	差		数値計算上発生する主要な誤差の 解決策や改善策を説明できる		数値計算上発生する主要 ついて, その原因を説明		数値計算上発生する主要な誤差に ついて, その原因を説明できない			
オーダ			いくつかのアル , オーダを導出 ⁻	ゴリズムについて できる.	少なくとも1つのアルゴリズムに ついて, オーダを導出できる.			アルゴリズムのオーダを導出でき ない			
アルゴリ	ズム		, 解を求める手流	指定されたすべての問題について ,解を求める手法(アルゴリズム)を正確に説明できる.		いくつかの問題について,解を求める手法 (アルゴリズム) の概要 を説明できる		問題の解を求める手法(アルゴリ ズム)を説明できない			
プログラ.	ムの実装		,解(近時解)	指定されたすべての問題について 解(近時解)を求める手法をプ ログラム実装できる		いくつかの問題について, 時解)を求める手法をプロ 実装できる		問題の解を求める手法をプログラ ム実装できない			
学科の	到達日標功	頁目との関									
			<u> 小</u> 教育到達度目標 (H	1)							
		* (D) TH	秋月到廷及口惊 (I	')							
教育方法	立寺	*6.15=1.55	のエンナナサび林からハ	とから やまく 御書り	*****・*******************************	5.米人/古言		フセルカルナン、フトナ、田のナファト			
概要		数値計算 に主眼を 公式をは	の子法を基礎からだ 置いている. 内容と じめとする代表的な	がりやすく解説し としてはニュートン な数値計算アルゴリ	, 数字の知識だけで 法, 2分法, ガウス ズムについて学ぶ.	の消去	話, 反復活	るわけではないことを理解すること 生, 差分法, 台形公式, シンプソンの			
授業の進	め方・方法	方程式の 各回の授	解法,補間,微分方 業において,説明し	を を で で で 発 値解法を実践	ど,数値計算で近似 するための課題を出	以解を 出題する	算出する標: る.	準的な問題について, 一通り扱う.			
注意点		. 本科目 証する学 内容であ	は学修単位適用科目 習時間と, 予習・復	であるため,未提 習及び課題レポー	出課題が1/4以上あ ト作成に必要な標準	る場合	合は合格の対	ムを実装して結果を確認すること 対象とならない、本科目は,授業で保 間の総計が,90時間に相当する学習			
授業計画	画	•									
		週	受業内容			週ごとの到達目標					
		1週	アルゴリズムと計算	アルゴリズムと計算量, 漸化式			計算量の概念を理解した上で、(時間的)計算量を導出できる。 いくつかの問題の解法を漸化式に帰着できる				
		2週	反復法. 誤差と桁落	復法. 誤差と桁落ち・情報落ち			反復式から得られる数値が解となる方程式を導出できる。 打切誤差や桁落ち、情報落ちなど、数値計算上発生する現象について、その原因を説明できる。				
	2 10	3週	非線形方程式の解え	線形方程式の解法			ニュートン法のアルゴリズムを説明できる 2分法のアルゴリズムを説明できる				
後期	3rdQ	4週	連立方程式の解法(立方程式の解法(1)			ガウスの消去法のアルゴリズムを説明できる 掃き出し法のアルゴリズムを説明できる				
		5週	連立方程式の解法(立方程式の解法(2)			ヤコビ法のアルゴリズムを説明できる ガウス・ザイデル法のアルゴリズムを説明できる SOR法のアルゴリズムを説明できる				
		6週	演習		学習内容についての演習を行う						
	1	7週	復習				前半の内容の復習を行う。				
		8週	中間試験								
	4thQ	9週	固有値問題				 ヤコビ法のアルゴリズムを説明できる 累乗法のアルゴリズムを説明できる				
							。 泉形補間について説明できる				
		10週	補間 最小2乗法	·			ニュートンの前進差分補間について説明できる ラグランジュ補間について説明できる 最小2乗法について説明できる				
		12週	数値微分				前進・中間・後退差分により、1階、および、2階の行分を差分近似できる うグランジュ補間を用いた1階の微分係数の計算方法 説明できる				
		13週	数值積分	—————————————————————————————————————			方形公式・台形公式について説明できる シンプソンの公式について説明できる				
		14週	かかける			オイラー法, ホイン法・ルンゲクッタ法のアルゴリズムを説明できる					
		15週				差分法について説明できる 発半の内容の復習を行う					
		エン旭	復習				後半の内容の復習を行う.				

	1	6週 期末	 <試験						
モデルコフ	プカリキニ		習内容と到達		·				
分類 分野			学習内容	学習内容の到達目標				到達レベル	授業週
				同一の問題に対し、それを解決できる複数のアルゴリズムが存在 しうることを知っている。				4	後1,後3,後 4,後5,後 9,後10,後 11,後12,後 13,後14
基礎的能力	工学基礎	情報リテラシー	う 情報リテラ シー	与えられた基本的な問題を解くための適切なアルゴリズムを構築 することができる。				3	後1,後3,後 4,後5,後 9,後10,後 11,後12,後 13,後14
				任意のプログラミン 装できる。	ング言語を用いて、	構築したアルゴリ	ズムを実	3	後1,後3,後 4,後5,後 9,後10,後 11,後12,後 13,後14
専門的能力				コンピュータ上での数値の表現方法が誤差に関係することを説明できる。				4	
	分野別の専 門工学	情報系分野	情報数学· 情報理論	コンピュータ上で数値計算を行う際に発生する誤差の影響を説明できる。				4	
				コンピュータ向けの主要な数値計算アルゴリズムの概要や特徴を説明できる。				4	
評価割合									
	試験		果題	相互評価	態度	ポートフォリオ	その他	合計	+
総合評価割合	70	3	30	0	0	0	0	100)
基礎的能力	0	()	0	0	0	0	0	
専門的能力	70	3	30	0	0	0	0)
分野横断的能	力 0	()	0	0	0	0	0	