		事門学校	開講年度 令和04年度 (2	2022年度)	授業科目	メカトロシステム			
科目基礎	と								
科目番号		4031		科目区分	専門 / 選択	7			
授業形態		講義		単位の種別と単位	数 学修単位:	2			
開設学科		機械・電	電子システム工学専攻	対象学年	専2				
開設期		前期		週時間数	2				
教科書/教 担当教員	材	適宜資料 関森 大	料を配布する。 介						
到達目標	<u> </u>	TINJAN 7	71						
(1)センサ	・アクチュ	Lエータの基 Lエータの配 Lよってシス	基礎知識や動作原理が理解でき、コンピニ 会方法が理解でき、基本的なシステムが ミアム全体の知能化が実現できる。	ュータによる制御がてが実現できる。	できる。				
ルーブリ	<u> </u>			_					
			理想的な到達レベルの目安	標準的な到達レベ	ルの目安	未到達レベルの目安			
評価項目1	_		センサ・アクチュエータの基礎知 識や動作原理が理解でき、コンピュータによる制御が的確にできる。	センサ・アクチュ 識や動作原理が理が ュータによる制御が	解でき、コンピ	センサ・アクチュエータの基礎知 識や動作原理が理解でき、コンピ ュータによる制御ができない。			
評価項目2	2		センザ・アクチュエータの融合方 法が理解でき、基本的なシステム が的確に実現できる。	センサ・アクチュ 法が理解でき、基 が実現できる。	エータの融合方 本的なシステム	センサ・アクチュエータの融合方 法が理解でき、基本的なシステム が実現できない。			
評価項目3	3		プログラミングによってシステム 全体の知能化が的確に実現できる。	プログラミングに 全体の知能化が実施	よってシステム 現できる。	プログラミングによってシステム 全体の知能化が実現できない。			
学科の至	達日標I	 項目との!!		•		-			
		<u>, , , , , , , , , , , , , , , , , , , </u>	N KIN						
概要	教育方法等 本授業では、メカトロニクスに必要な機械、電気、電子、情報工学の基礎知識を総合的に講義し、さらに実機を 演習を行う。授業の内容としては、自律移動ロボットを題材にして、そのサブシステムである、(1)センサ、(2) ュエータ、(3)制御システムを中心に取り上げ、実際の仕組みや具体的な制御方法について基礎から段階的に解説 そして、最後にこれらを統合する考え方ついて説明する。								
授業の進め	か方・方法	配布資料	料に沿った講義を行う。また、ロボット	教材を用いた演習も	行う。				
注意点		90時間	よ、授業で保証する学習時間と、予習・ に相当する学習内容である。 対象としない欠席条件(割合) 1/3以上の		ト作成に必要な情	票準的な自己学習時間の総計が、			
授業の属	属性・履何	多上の区分	· 分						
	<u></u>		□ ICT 利用	☑ 遠隔授業対応		□ 実務経験のある教員による授業			
授業計画	 I								
		週	授業内容	设	間ごとの到達目標				
前期	1stQ	1週	移動ロボットの概要	-	移動ロボットのハードウェア、ソフトウエア、インターフェイスなどの基本構成について理解できる。さらに、実機の移動ロボットをサンプルプログラムにて動作させることができる。				
		2週	マイコンの制御		ロボットシステム全体の制御を行なうマイコンの機能 と基本構成について理解できる。また、マイコンのプログラム言語を用いた具体的な制御方法について理解 できる。				
		3週	センサの原理と制御方法	+	ロボットのセンサとして広く用いられている、光セン サ、カ覚センサ、視覚センサ、ロータリエンコーダ等 の原理と制御方法について理解できる。				
		4週	赤外線近接センサの制御	>	赤外線近接センサの制御演習を通して、制御回路やインターフェイス回路について理解でき、実際の赤外線 近接センサを用いて、物体の検出方法が修得できる。				
		5週	ロータリエンコーダの制御	12	ロータリエンコーダの制御演習を通して、制御回路等 について理解でき、実際のロータリエンコーダを用い て、モータの回転角度、角速度等の測定方法が修得で きる。				
		6週	アクチュエータの原理と制御方法	J-F	ロボットのアクチュエータの主流であるステッピング モータ、DCモータ等を取り上げ、その原理と制御方法 について理解できる。				
		7週	DCモータの制御(1)	I I	DCモータの制御演習を通して、制御回路やインターフェイス回路について理解でき、実際のDCモータを用いて、モータの正逆転、PWM方式などの駆動方法が修得できる。				
		8週	DCモータの制御(2)	角	DCモータの制御演習を通して、PI制御理論について理解でき、実際のDCモータを用いて、モータの速度制御方法が修得できる。				
		9週	DCモータの制御(3)	F	同上				
	2ndQ	10週	移動ロボットの位置制御(1)		移動ロボットの機構および運動学について理解できる。また、フィードフォワードとフィードバックを用いた位置制御方法について理解できる。				
		11週	移動ロボットの位置制御(2)	- IS	移動ロボットの位置制御演習を通して、フィードフォ ワードとフィードバックによる位置精度を測定し、そ の結果について考察することができる。				

		12週	移動ロボットの位置推定				移動ロボットの実用的な位置推定方法であるデッドレ コニングについて理解でき、実際の移動ロボットを用 いた位置推定方法が修得できる。					
13週 障害物			障害物回避(1				移動ロボットに搭載された赤外線近接センサを用いて 、障害物を検出・回避しながら、移動ロボットを目的 地へ誘導する方法が修得できる。					
		14週	障害物回避(2	障害物回避(2)				同上				
	15週 障害物回避(3)					同上						
		16週	期末試験									
モデルコアカリキュラムの学習内容と到達目標												
分類								到達レベル 授業週				
評価割合												
	試験		発表	相互評価	態度	ポートスオ	フォリ	その他	演習課題	合計		
総合評価割	合 50		0	0	0	0		0	50	100		
基礎的能力	0		0	0	0	0		0	0	0		
専門的能力	50		0	0 0		0		0	50	100		
分野横断的 力	能 0		0	0	0	0		0	0	0		