| А | kashi Co | ollege | | Year | 2022 | | (| Course
Title | Advanced
Electromagnetics | | |--|---------------------------|-----------------------------------|---|---|--|---|---|--|--|--| | Course | Informa | tion | | | 1 | | 1 | | ssa omagnedas | | | Course Co | ode | 4019 | | | | Course Catego | ry | Specializ | ed / Elective | | | Class For | mat | Lecture | _ | | _ | Credits | | | c Credit: 2 | | | Department Mechanica
Engineerii | | | | d Electronic | Student Grade Adv. 1st | | Adv. 1st | | | | | Term | | Second 9 | Semes | ter | Classes per Week 2 | | 2 | | | | | Textbook
Teaching | | | | | | | | | | | | Instructor | | KAJIMUF | RA Yos | hihiro | | | | | | | | Course | Objectiv | 'es | | | | | | | | | | fields duri
Evaluation
Evaluation | ing polariz
n item (3) | ation.
Can formul | late lav | ws and pro | | and magnetic fie | ld phe | nomena ai | applied problems.
antitative evaluation of electric
nd solve applied problems. | | | Rubric | | | 1 | | | Ta: 1 1: | | | T., | | | | | | | al Level
formulate | Standard Leve | | and | Unacceptable Level Cannot formulate laws and | | | | Achievement 1 | | | prol
phe | blems of el
nomena ar
blems. | Can formulate laws and problems of electrostatic field phenomena and solve problems. | | | problems of electrostatic field phenomena and solve problems. | | | | Achievem | nent 2 | | diel
prol
qua
elec | Understand the nature of dielectrics and can solve applied problems related to the quantitative evaluation of electric fields during polarization. Understand the nature of dielectrics and problems relat quantitative evaluation of electric fields of polarization. | | | can solve
ed to the
valuation of | | Do not understand the nature of dielectric materials and cannot solve problems related to the quantitative evaluation of electric fields during polarization. | | | Achievement 3 | | | prol
mad | formulate
blems of cu
gnetic field
re applied p | irrent and phenomena and | Can formulate
problems of cu
magnetic field
solve problems | rrent phend | and | Cannot formulate laws and problems of current and magnetic field phenomena and solve problems. | | | | | | elec | derive Ma
tromagnet
e applied p | ic equations and | Can derive Maxwell's electromagnetic equations and solve problems. | | | Cannot derive Maxwell's electromagnetic equations and solve problems. | | | Assigne | d Depar | tment Ob | ojectiv | ves | | | | | | | | Teachin | ig Metho | | | | | | | | | | | Outline Departme provide u (related t for the Ac electroma | | | rse is based on Electromagnetics I and II taught in the Electrical and Computer Engineering ent and aims to further enhance and develop the content. Electromagnetics I and II also largely university-level lessons, however some parts were either omitted due to academic constraints to peripheral basic academic ability, etc.), or simplified by relaxing their stricter handling. However dvance Courses, it is desirable to maintain the academic ability for basic subjects like agnetics at a university level both in name and reality. Therefore, the course aims to further raise the le supplementing the content of Electromagnetics I and II. | | | | | | | | | Style | | The eval
for these
problems | e. Hand | will be bas
douts will h | sed 100% on peri
ave content on e | odic exam scores
ectromagnetic th | s. The
neory, | pass mark
formulation | c is a score of 60 or more in total on, and specific computational | | | Notice | | guarante
assignme
at our so | eed in o
ent rep
chool's | classes and
oorts. It is I
Electrical a | l the standard sel | f-study time requestudents have stagineering Depart | uired f
udied
ment i | or pre-stu
Electroma
prior to tak | s include the learning time
dy / review, and completing
gnetics I and II (in years 3 and 4)
king this course.
grade. | | | Charact | eristics | of Class / | ['] Divis | sion in Le | arning | | | | | | | □ Active | Learning | | | Aided by IO | T | ☑ Applicable t | o Rem | note Class | ☐ Instructor Professionally Experienced | | | | | | | | | | | | | | | Course | Plan | | | | | | | | | | | | | | Theme | = | | | Goals |
S | | | | | 3rd
Quarter | 1st | Explain
and el-
pheno
potent
electri | d electric power lines as fields of electrical enomena. Define the electric potential as rential of an electric field, and consider the ctric field as an electric potential gradient. Use and grad for calculations in this case. | | and e
phen-
poter | Understand the virtual concepts of electric field and electric power lines as fields of electrical phenomena. Can define the electric potential as potential of an electric field, and consider the electric field as an electric potential gradient. | | | | | 2nd
Semeste
r | | 2nd | Explain
be use
of its r | ed when ca
meaning in | most likely to
fields, in terms
ication to
le problems. | terms of its mear | | nuss's theorem", which is most
d when calculating electric fields, in
aning in physics and application to
d solve example problems. | | | | | | 3rd | Exami
and ve
terms
explain
equati | ne the dive
ectors in bo
by introdu
n example
ons, which | in physical and mathematical ucing divergence (div). Also, a uses for Laplace's and Poisson's hare the most versatile and well-are for dearships and extraction. | | | and vector
ematical to
. Also undo
on's equat | ne divergence of electric power rs in both physical and erms by introducing divergence erstand how to use Laplace's and ions, which are the most versatile a equations for describing lds. | | | | 4th | Capacitance Outline the potential and capacity factors, and the energy of conductive systems, in regards to a charged conducting system. Learn more about the two most popular conducting systems, namely capacitance, including examples of actual calculations. | Understand the potential and capacity factors, and the energy of conductive systems, in regards to a charged conducting system. Understand the two most popular conducting systems, namely capacitance, including examples of actual calculations. | |----------------|------|--|--| | | 5th | Dielectric materials (polarization) In many cases, capacitors have insulators (dielectrics) rather than vacuums (air). Learn about various materials' dielectric properties by introducing the concept of flux density in order to understand the physical phenomena of dielectric materials in electric fields. | In many cases, capacitors have insulators (dielectrics) rather than vacuums (air). Can explain various materials' dielectric properties by introducing the concept of flux density in order to understand the physical phenomena of dielectric materials in electric fields. | | | 6th | Electric fields in dielectric materials Solve example problems and explain the handling of electric fields in dielectric materials, in particular, the interface conditions for dielectric devices, electric power line refraction, the energy density of electric fields, and the forces acting on dielectric materials (the virtual displacement method). | Can solve example problems and explain the handling of electric fields in dielectric materials, in particular, the interface conditions for dielectric devices, electric power line refraction, the energy density of electric fields, and the forces acting on dielectric materials (the virtual displacement method). | | | 7th | Electric field imaging When finding electric fields in vacuums and dielectrics, while it is generally necessary to solve Laplace's and Poisson's equations, in some special boundary conditions, one can use a sophisticated and simple "imaging" method that has been known for many years. Explain this "imaging" method. | When finding electric fields in vacuums and dielectrics, while it is generally necessary to solve Laplace's and Poisson's equations, in some special boundary conditions, one can use a sophisticated and simple "imaging" method that has been known for many years. Can explain this "imaging" method. | | | 8th | Current fields and electrostatic fields When a current is distributed through a continuous conductor there are times when problems may be easily solved by using similarities with the electrostatic field. Also, electromagnetically express Kirchhoff's Law, which often appears in circuits. | When a current is distributed through a continuous conductor there are times when problems may be easily solved by using similarities with the electrostatic field. Also, electromagnetically express Kirchhoff's Law, which often appears in circuits. | | | 9th | Magnetic field Explain in detail the process that starts with the Biot–Savart law and derives Ampère's circuital integral law, from the fundamental point of view that currents are the sources of magnetic fields. | Can explain the process that starts with the Biot–Savart law and derives Ampère's circuital integral law, from the fundamental point of view that currents are the sources of magnetic fields. | | | 10th | Calculation of magnetic field distribution In describing a magnetic field that has a different starting point from that of an electric field, it becomes necessary to have a mathematical expression that differs from that of an electric field. In magnetic fields, the vector rotation (rot) is important. Explain vector potential, forces acting on electric currents, etc. | In describing a magnetic field that has a different starting point from that of an electric field, it becomes necessary to have a mathematical expression that differs from that of an electric field. Can explain vector rotation (rot) in magnetic fields, vector potential, forces acting on electric currents, etc. | | | 11th | Magnetic substances Most actual electric equipment that utilize magnetic fields use magnetic substances (ferromagnetic substances). Explain magnetic substances that are difficult to handle theoretically, including the correspondence between magnetic and electrostatic fields (BD- and HE-compatible), magnetic circuits, and the energy density of magnetic fields. | Most actual electric equipment that utilize magnetic fields use magnetic substances (ferromagnetic substances). Can explain magnetic substances that are difficult to handle theoretically, including the correspondence between magnetic and electrostatic fields (BD-and HE-compatible), magnetic circuits, and the energy density of magnetic fields. | | 4th
Quarter | 12th | Electromagnetic induction phenomenon Electromagnetic induction phenomenon is the principle for many kinds of equipment such as generators. However, electromotive force is generated by both the temporal variation of the magnetic flux itself and the relative motion of the conductor to it. Treat this phenomenon mathematically and derive Maxwell's electromagnetic equations. | Electromagnetic induction phenomenon is the principle of many kinds of equipment such as generators. However, electromotive force is generated by both the temporal variation of the magnetic flux itself and the relative motion of the conductor to it. Can treat this phenomenon mathematically and derive Maxwell's electromagnetic equations. | | | 13th | Inductance Inductance often appears as a representative element in electrical circuits. Learn about self- inductance and mutual inductance from the perspective of magnetic field energy, and explain the wave propagation speed of the reciprocating line as a calculation example. | Inductance often appears as a representative element in electrical circuits. Learn about self-inductance and mutual inductance from the perspective of magnetic field energy, and can calculate the wave propagation speed of the reciprocating line using calculation examples. | | | 14th | Maxwell's electromagnetic equations Explain Maxwell's electromagnetic equations in detail, which have critical meaning for those who learn electrical and electronic engineering as well as physics. In addition to deriving equations, do reverse derivations for the basic laws of electric field magnetic fields that have been studied. | Can explain Maxwell's electromagnetic equations in detail, which have critical meaning for those who learn electrical and electronic engineering as well as physics. In addition to deriving equations, can do reverse derivations for the basic laws of electric field magnetic fields that have been studied. | | | 15th | Solutions for Maxwell's electromagnetic equations and electromagnetic waves Solve Maxwell's electromagnetic equations as simultaneous differential equations and calculate electromagnetic waves' presence and velocity as a result of doing this. Also explain the basic characteristics of electromagnetic waves. | Can solve Maxwell's electromagnetic equations as simultaneous differential equations and calculate electromagnetic waves' presence and velocity as a result of doing this. Can also explain the basic characteristics of electromagnetic waves. | | | | | | 1 | | | | |----------------------------|-----------------|--------------|--|----------|-----------|-------|-------| | | 16th Final exam | | | | | | | | Evaluation N | 1ethod and V | Veight (%) | | | | | | | | Examination | Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | Subtotal | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | Basic
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Specialized
Proficiency | 100 | 0 | 0 | 0 | 0 | 0 | 100 | | Cross Area
Proficiency | 0 | 0 | 0 | 0 | 0 | 0 | 0 |