		 専門学校	盟講任度	令和03年度 (2		授業科目	構造システム II		
科目基礎		、テロコナ"人人		下 大 「 	-ULITIX)				
科目番号		0030				亩阳 / ユネネ	目 / 28-40		
村日番号 0030 授業形態 講義					科目区分 単位の種別と単位		専門 / 選択 学修単位: 2		
			キンフニ / , 工学事功		対象学年				
		建築・都市システム工学専攻			週時間数				
開設期 前期 必要に応じてプリン			 じてプリントを配布			 下 -不静定編-			
教科書/教材 必要に応じり、長嶋利夫 担当教員 三好 崇夫			:設計技術者が知っておくべき有限要		要素法の基本スキル	レ,オーム社(参	<u>-厶社(参考文献)</u> -		
型	<u> </u>	二灯 示入							
構造物の設構造解析にマトリクスマトリクス要素分割,	計,施工や 三用いられる ス構造解析法 ス構造解析法 境界条件や	6種々の数値 もにおける種 もを用いて簡	解析法の概要や特徴 々の剛性方程式にて 単な平面骨組構造の	数について理解し, Oいて理解し, 説明 O変位や節点力が計	解し,説明できる 説明できる(評価項目) できる(評価項目) 算できる(評価項目 第上の留意点につい	頁目(2)) 3)) 目(4))	月できる(評価項目(5))		
ルーブリ	<u> </u>		理想的な到達レベルの目安標準的な到達レベルの目安 未到達レベルの目安						
評価項目1			構造物の設計、 おける、構造解	施工や維持管理に 折の必要性につい	構造物の設計,施 おける,構造解析	正や維持管理に fの必要性につい	↓ おける,構造解析の必要性につい		
評価項目2			て十分に理解し、 構造解析に用い 解析法の概要や に理解し、説明	られる種々の数値 持徴について十分	て理解し、説明で 構造解析に用いら 解析法の概要や特し、説明できる		て理解し、説明できない 描造解析に用いられる種々の数値 解析法の概要や特徴について十分 に理解し、説明できない		
評価項目3			マトリクス構造 々の剛性方程式解し、説明でき	解析法における種 について十分に理 る	マトリクス構造解々の剛性方程式に、説明できる		•		
評価項目4			計算例を見なく 構造解析法を用 組構造の変位や る	とも,マトリクス いて簡単な平面骨 節点力が計算でき	計算例を見ながら 造解析法を用いて 構造の変位や節点	.簡単な平面骨組	単な平面骨組構造の変位や節点力		
評価項目5			要素分割, 境界 ど, マトリクス る実用上の留意 理解し, 説明で	条件や荷重条件な 構造解析法におけ 点について十分に きる	要素分割,境界条 ど,マトリクス構 る実用上の留意点 ,説明できる	4件や荷重条件な 造解析法におけ ほについて理解し	要素分割,境界条件や荷重条件な ど,マトリクス構造解析法におけ る実用上の留意点について理解し ,説明できない		
学科の到	」達目標項	 目との関 [/]					[, min CC 280 .		
学習・教育	育目標 (F) ≒	学習・教育目	標 (H)						
教育方法	等								
ドリーで、ナーで、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな		法等の数値計算に基づく構造解析技術が、土木、建築分野における構造物の大型化、合理化、長寿命化等に資 開発に大きく貢献してきたことは疑う余地もない。現在、それらの構造解析技術は、土木、建築分野の構造物 建設 に大きく貢献してきたことは疑う余地もない。現在、それらの構造解析技術は、土木、建築分野の構造物 建設 に大きなの基礎知識がなくとも使用可能な多くの汎用構造解析 フトウェアが開発されている。そのコデータミスによる誤った計算結果が、設計や維持管理に使用される危険性もはらんでいる。マトリクス構造 るくの構造力学の教科書から削除されてきたが、構造物の設計にかかわるコンサルタント、電算会社やメーカ がいら教育機関への教育要請は高い。では、企業で鋼橋や鋼構造物の設計業務に従事していた教員が、その経験を活かし、土木、建築分野におけるで最も多用されている、バネ、トラス、はり要素を用いたマトリクス変位法による構造解析について、2次元を出るの基礎理論、計算方法、実用上の注意点について説明する。それにより、土木、建築技術者として に結果の妥当性が判断できる素養を習得する。							
授業の進め方・方法 物に対し、			形式で行い,各種要素の剛性方程式などの誘導過程,構造全体系の剛性方程式の組み立てなどは板書しなが 5. 剛性方程式の意義や,荷重条件や境界条件の重要性などについて理解を深めるため,授業中に簡単な構造 マトリクス変位法による変形等の計算過程を具体的に解説するとともに,計算結果を別の構造解析法による でする.また,実践的に理解を深めさせるため,各種要素の剛性方程式を用いて,簡単な平面骨組構造物の変 で力等に関するレポート課題を課す.						
本科目は、授業で保証する学習時間と、予習・復習及び課題レポート作成に必要な標準的な自己学習時間の総計が , 90時間に相当する学習内容である。毎回の授業は、本科レベルの構造力学に関する基礎知識を有することを前提とし 注意点									
授業の属	性・履修	上の区分							
	ィブラーニ	ング	☑ ICT 利用		☑ 遠隔授業対応		☑ 実務経験のある教員による授業		
	ī								
<u> </u>	1	週];				
前期	1stQ	1週	構造物と数値解析(受計、建設や維持管	理における。マ	構造物の計画,	D計画,設計,建設や維持管理における,マト 法や有限要素法等の数値解析法の必要性が理解		
		2週	構造物と数値解析(まの概要や特徴と,	刈豕⊂りつ回起 1-		去の概要や特徴と,対象とする問題に 造解析法について理解できる.		
		3週	有限要素法の概要 有限要素法や各種 ・	R要素法の概要 有限要素法や各種有限要素の特徴について説明		有限要素法や各種有限要素の特徴について理解できる・			
		4週	マトリクス構造解析 線形性と重ね合わt 物の剛性方程式を導	せの原理に基づいて	., 双吻仏佛坦		つせの原理に基づいて,一般的な構造 が導けることが理解できる.		

			1				
		5週		2) keの法則を用いて1次元バネ 方程式が導けることを説明す	カのつり合い条件とHooke 要素やトラス要素の剛性方 きる.	eの法則を用いて1次元バネ 記程式が導けることが理解で	
		6週	マトリクス構造解析法(3要素剛性方程式を重ね合程式が組み立てられるこついて説明する.	3) わせて,構造全体系の剛性方 と,剛性マトリクスの特徴に	要素剛性方程式を重ね合れ程式が組み立てられることのいて理解できる.	Dせて,構造全体系の剛性方 2,剛性マトリクスの特徴に	
		7週	マトリクス構造解析法(41次元バネ要素用いた簡)2次元バネ要素の要素剛(る.	!) 単な構造解析例, 直接法による 性方程式の誘導について説明で)	いて,簡単な1次元バネ構造 る2次元バネ要素の要素剛性 できる.	
		8週	安系とハイ安系との関係	剛性方程式を導くため,トラス と1次元バネ要素の拡張につい 元問題における変位や力の座標 スについて説明する.			
	2ndQ	9週	2次元トラス要素 (2) 拡張された1次元バネ要 て,2次元トラス要素の を説明する.	素に座標変換を施すことによっ 要素剛性方程式が導かれること	拡張された1次元バネ要素に座標変換を施すことによって,2次元トラス要素の要素剛性方程式が導かれることが理解できる.		
		10週	解き,その結果を応力法 とによって,同じ結果が	方程式を用いて簡単な構造物を による計算結果と比較するこ 得られることを示す. また おける一般的な計算の流れに	2次元トラス要素の剛性方程式を用いて,簡単な構造物を解き,その結果を応力法による計算結果と比較することができる。また,いずれの解析法を用いても,同じ結果が得られることが理解できる。さらに,マトリクス構造解析における一般的な計算の流れについて理解できる。		
		11週	2次元骨組要素 (1) 2次元骨組(ビーム)要 , ひずみエネルギーと変	素の要素剛性方程式を導くた& 位関数について説明する.	2次元骨組(ビーム)要素の, ひずみエネルギーと変位 関数について理解できる.		
		12週	ら2次元骨組(ビーム)! ることを説明する. また	用いて,ひずみエネルギーか 要素の要素剛性方程式が導かれ ,座標変換マトリクスを拡張 元骨組要素の剛性方程式が導力	ることができる。また、座伝変換くトリン人を拡張し		
		13週	2次元骨組要素 (3) 構造解析の手順について 要素の剛性方程式を用い	理解を深めるため,2次元骨線で簡単な構造物を解く.	2次元骨組要素の剛性方程式を用いて簡単な構造物を解くことができる.それによって,構造解析の手順について理解できる.		
		14週	単な構造物について応力	程式を用いて解いたのと同じ作 法によって計算し, マトリク 果が得られることを説明する	2次元骨組要素の剛性方程式を用いて解いたのと同じ簡単な構造物について応力法による計算ができる。また、マトリクス構造解析と同じ計算結果が得られることが理解できる。		
		15週		おける留意点 折における,要素分割,境界タ 上の留意点について説明でき	、 2次元骨組構造の構造解析 件や荷重条件など,実用上 る.	における,要素分割,境界条 の留意点について理解でき	
		16週	期末試験				
モデルコ	アカリキ	ユラムの	D学習内容と到達目標				
分類		分野		内容の到達目標		到達レベル 授業週	
評価割合							
				レポート	 質疑応答や態度	合計	
総合評価割合					10	100	
基礎的能力				0	0	0	
専門的能力				40	10	100	
分野横断的能力				0	0	0	
					·		