| Akashi College | | Year 2022 | | | | ourse
Title | Geophysics | | | | | | | |---|---|---|---|---|--|---|--|--|---|--|--|--|--| | Course | Informa | tion | | | | | | | | | | | | | Course Code 4003 | | | | | Course Catego | ory General / E | | / Elective | | | | | | | Class Format Lecture | | | | | | Credits | Academic (| | c Credit: 2 | | | | | | Departme | ent | Architec | ture a | ure and Civil Engineering | | Student Grade | rade Adv. 1st | | | | | | | | Term Second Se | | | Semester | | Classes per We | Veek 2 | | | | | | | | | Textbook
Teaching | | | | | | | | | | | | | | | Instructor | - | YOKOYAMA Masahiko | | | | | | | | | | | | | Course Objectives | | | | | | | | | | | | | | | seismic w
observation
(2) Learn
described
(3) Under
topograph
volcanic e | raves, georon equipm about how in (1). By stand the ruptions. | magnetism
ent.
w the Earth
doing this
concept of
ng so, learr | ther's into
com
plate
the l | mal flow, etc
ernal structui
prehensively
tectonics an
basic knowle | e.) and understand
re, surface phenol
understand the s
d the relationship
dge for considerin | I their meaning.
mena, and histo
olid Earth syster
between them
g the global env | Also unity have m. and the vironme | inderstande been int
e movement and di | related to the solid Earth (gravity, d the basic principles of serpreted using the observations ent of the Earth's layers and sasters such as earthquakes and chieve these goals. | | | | | | Rubric | | | | | | _ | | | | | | | | | | | | Id | Ideal Level Standard Lev | | | el | | Unacceptable Level | | | | | | Achievement 1 | | | | | | Understand the mechanism for estimating the physical properties of objects from the observation results. | | al | Do not understand the mechanism for estimating the physical properties of objects from the observation results. | | | | | | Achievement 2 | | | Fully understand what kinds of observation evidence the modern understanding of the Earth is estimated on. | | | Understand whobservation evi
modern unders
Earth is estima | evidence the erstanding of the | | Do not understand what kinds of observation evidence the modern understanding of the Earth is estimated on. | | | | | | Achievement 3 | | | Fully understand natural phenomena such as earthquakes and volcanic eruptions through the concept called plate tectonics. | | | Understand natural phenomena such as earthquakes and volcanic eruptions through the concept of plate tectonics. | | and
ough the | Do not understand natural phenomena such as earthquakes and volcanic eruptions through the concept called plate tectonics. | | | | | | Assigne | d Denar | tment Ol | niect | ives | | | | | | | | | | | | g Metho | | Jece | | | | | | | | | | | | Outline | currently
quantitie
of the m
physical
equipme | course will have lectures on how the structure and properties of the Earth (mainly the solid Earth) are rently understood. Since the purpose of geophysics is to capture the Earth quantitatively using physical ntities such as gravity and heat, the main purpose of this course is to understand the physical properties he materials that make up the Earth, and explain the basic properties and observation techniques of each sical quantity. It will also explain the laws of physics and basic structures used in the observation ipment. It will be taught by a faculty member who is investigating the magnetic properties of deep-sea iment obtained in core drilling at Academia Sinica in Taiwan. | | | | | | | | | | | | | Classes ar | | | | are held in a lecture style. on for this course is Takeuchi. | | | | | | | | | | | Notice This course's content will amount to 90 hours of study in total. These hours include the learning time guaranteed in classes and the standard self-study time required for pre-study / review, and completing assignment reports. The course plan may change. Lessons are serial, not standalone. Students who miss 1/3 or more of classes will not be eligible for a passing grade. | | | | | | | | | dy / review, and completing | | | | | | Charact | eristics | of Class / | Div | ision in Le | arning | | | | | | | | | | | Learning | <i>1</i> | ☐ Aided by ICT ☑ Applicable t | | | o Remo | ote Class | ☑ Instructor Professionally
Experienced | Course | Plan | | | | | | | | | | | | | | | | | Then | ne | | | Goals | | | | | | | | 2nd
Semeste
r | 3rd
Quarter | 1st | Course guidance / The shape and size of the Earth (1) Explain, as guidance, the course policy and overview. Introduce a perception of the Earth's shape and size in ancient times. | | | Understand the role played by the academic field of "geophysics" and the role that physics development plays in understanding the Earth's internal structure. | | | | | | | | | | | 2nd | The shape and size of the Earth (2) Explain the definitions of the currently recognized shapes for the Earth (Earth ellipsoid and geoid), and also describe the basics of positioning, too. | | | Understand the basics of positioning using geometry. | | | | | | | | | | | 3rd | Gravity Explain what gravity means, by showing the Earth's mass and density obtained by using it. Also explain the meaning of gravity anomaly. | | | Understand how to estimate the Earth's internal structure from the laws and observed values of gravity that acts on it. | | | | | | | | | | | 4th | Isostasy Explain the concept of isostasy and its relationship with gravity. Also introduce examples of crustal movement caused by it. | | | | Understand the concept of isostasy and the characteristics of the Earth's gravity that is related to it. | | | | | | | | | | 5th | Seismic waves Explain the nature of seismic waves, and explain the methods for surveying underground structures using them. | | | | Understand the characteristics of seismic waves and how to estimate earthquake information using them. | | | | | | | | | | 6th | The interior structure of the Earth (
Introduce the larger structure of the
interior, which has been estimated
seismic wave analysis. | e Éarth's | Understand the principles of a seismic refraction survey and the method for estimating the Earth interior structure that uses it. | | | |---------------|----------------|----------|--|---------------------------------|--|--|--| | | | 7th | The interior structure of the Earth (
Introduce the subterranean structur
Earth's surface layer, which has bee
mainly using seismic wave analysis. | are of the survey and the n | | rinciples of a seismic reflection
ethod for estimating the shallow
t's structure that uses it. | | | | | 8th | Earth heat
Explain what is the source of heat in
Earth, and show the calorimetric dis
the surface layer of the Earth. | | Understand the meaning of heat in physics and the state of the Earth's interior that can be estimated from the calorimetric distribution on the its surface. | | | | | 4th
Quarter | 901 | Geomagnetism
Explain the magnetic distribution or
surface and how geomagnetism wa
Furthermore, explain magnetic ano | s created. | Understand the causes of geomagnetism by understanding "What does magnetism mean?" | | | | | | 10th | Rock magnetism and paleomagnetis
Explain the mechanism for rocks be
magnetized and introduce the magn
from the past that have been invest
it. | coming
netism shifts | Understand the mechanism that records past geomagnetic information in rocks. | | | | | | 11th | Continental drift Introduce the classic continental dri Wegener. Also explain the continen restoration by paleomagnetism that a revival of continental drift theory. | tal position's
has triggered | Understand the original information for "continental drift theory," its interpretations, and how to estimate the continental drift using current observation data. | | | | 1 1 2 | | 12th | The spreading of the seafloor
Explain seafloor's topography and u
structure and the relationship betwon
anomaly distribution in the ocean and
of seafloor spreading. | een magnetic | Understand the hypothesis that associates geomagnetic records with continental drift. | | | | | | 1301 | Plate tectonics (1)
Explain the concept and movement
the shape their boundaries as the b
tectonics. | | Understand the original meaning of the concept called plate tectonics and its difference from continental drift theory. | | | | | | 14th | Plate tectonics (2) Use plate tectonics to explain the m the Earth's layers (earthquakes, vol orogeny, etc.) | | Understand how natural phenomena such as earthquakes and volcanic activities can be explained with plate motions. | | | | | | 15th | Plate tectonics (3) Introduce the properties of hotspots the difference between relative and motions. Furthermore, explain the oplate motions. | absolute plate | | | | | | | 16th | Final exam | | | | | | Evaluation | า Meth | od and V | Veight (%) | | • | | | | | | | Exercise | Examination | | Total | | | Subtotal | | | 30 | 70 | | 100 | | | Basic Profici | ency | | 30 | 70 | | 100 | | | Specialized I | Proficien | су | 0 | 0 | | 0 | | | Cross Area I | Proficien | су | 0 | 0 | | 0 | | | | | | | | | | |