| Akashi College | | | Year | Year 2022 | | Course
Title | Introduction to Nano
Materials Design | | | | | | | | |--|---|--|--|--|--|--|---|--|--|--|--|--|--|--| | Course | Informa | tion | | | | | | | | | | | | | | Course Co | ode | 4004 | | | Course Catego | ry Genera | neral / Elective | | | | | | | | | Class Format Lecture | | | | | Credits | Acade | Academic Credit: 2 | | | | | | | | | Department Architectu | | | re and Civil Engineering | | Student Grade | Adv. 1 | st | | | | | | | | | Term First Seme | | | ester | | Classes per We | eek 2 | | | | | | | | | | | Textbook and/or Teaching Materials Handouts | | | | | | | | | | | | | | | Instructo | r | NAKANISH | NAKANISHI Hiroshi | | | | | | | | | | | | | Course | Objectiv | es | | | | | | | | | | | | | | nanomate
Evaluation
ideas to d
Evaluation | n 1: Under
erials design
n 2: Deepe
others plair | gn through then one's unde
only through e | e lectures.
erstanding of qu
xercises and a p | uantum mechanics
presentation. | s and develop p | resentation sk | s in applying the laws to
ills in expressing one's opinions and
ches in one's major field. | | | | | | | | | Rubric | | | | | 1 | | | | | | | | | | | | | | Ideal Level of A | Achievement | Standard Level of Achievement | | ent Unacceptable Level of Achievement) | | | | | | | | | Evaluation 1 | | | The student cle
and explains th
design method | early understands
le nanomaterials
s. | The student describes that material properties come from the quantum mechanics. | | The student did not describe that material properties come from the quantum mechanics and did not explain the nanomaterials design methods. | | | | | | | | | Evaluation 2 | | | The student cleand explains he quantum mech | early understands
ow to utilize the
lanic algebra. | The student utilizes the quantum mechanics algebra. | | The student did not utilize the quantum mechanics algebra. | | | | | | | | | Evaluation 3 | | | The student approximation and approximation and appr | design for | The student proposes the application of the nanomaterials design in her/his field. | | The student did not propose the application of the nanomaterials design in her/his field. | | | | | | | | | Assigne | d Depar | tment Obj | ectives | | | | · | | | | | | | | | | ng Metho | | | | | | | | | | | | | | | Outline | | motions of
quantum is
students a
materials,
Outline an | f nuclei and elec
mechanics clarifi
are going to lear
which will be re
d necessary sub | trons that make uses the composition the state-of-the equired in various prects will be illustrated. | ip a material. Se
n and character
-art nanomateri
engineering field
rated through th | econd, the stu-
istics (physica
als design me
ds in the futur
neory lectures | , followed by practice lectures. | | | | | | | | | Style | | solutions t | o other students | s easy to understa
g time quaranteed | and.
I in the class an | d the total of t | hands, and to explain her/his the standard self-study time | | | | | | | | | Notice | | necessary
More than | for the preparat
four-fifth of the | tion / review are 9
attendance is rec | 90 hours of stud | y content. | , | | | | | | | | | Charact | eristics | of Class / [| <u>Division in Le</u> | arning | | | | | | | | | | | | ☐ Active Learning | | | ☐ Aided by IC | т | ☐ Applicable to Remote Class | | Instructor Professionally Experienced | Course | Plan | · · | | | | · | | | | | | | | | | | | Т | heme | | | Goals | | | | | | | | | | 1st
Semeste
r | 1st
Quarter | 1st d | Learn the outline
ifferences betwe | Im Mechanics (First
e of quantum mec
den quantum mechanics by comparing | chanics and
nanics and | The student explains the differences between quantum mechanics and Newtonian mechanics | | | | | | | | | | | | 2nd Lo | utline of Quantu | ım Mechanics (Sed
I of expressing mo | | The student explains the description of the particle motion in quantum mechanics. | | | | | | | | | | | | 3rd A | lgebra) | m Mechanics 1 (Op
gebra, which is ne
echanics | | The student handles the basic algebra necessary in quantum mechanics. | | | | | | | | | | | | 4th Sir | asics of Quantur
quation)
chrodinger wave | n Mechanics 2 (So
e equation is the b
anics. Learn Schro | asic equation | The students explains the relation between wave packet and particle motion. | | | | | | | | | | | | 5th R | asics of Quantur
elations I: Coord | m Mechanics 3 (Co
dinates and Mome
Itation relation bel
nomentum. | ntum) | The students operates the commutator brackets to coordinates and momentum. | | | | | | | | | | | | 6th R | elations II: Angı | m Mechanics 4 (Co
ular Momentum)
itation relation reg
im. | | The students operates the commutator brackets to coordinates and momentum. | | | | | | | | | | | | 7th | Basics of Quantum
Operators)
Learn about Herm | ` | ermitian | The student explains the Hermitian, and calculates the time evolution of expectation value of physical quantity. | | | | |----------------------------|----------------|-----------|---|--|--------------------------------------|--|-------|-------|--| | | | 8th | Basics of Quantum
Potential)
Learn the quantur
square-well poten | n Mechanics 6 (So | | The student derives the quantum states of a particle bound by a square-well potential. | | | | | | | 9th | Basics of Quantum Mechanics 7 (One-Dimensional Scattering Problem and Tunnel Effect) Learn about scattering problems and understand the tunnel effects. | | | The student derives the transmission probability through the square-well potential energy barrier. | | | | | | | 10th | Basics of Quantun
Oscillators)
Learn about the q
oscillators. | ` | | The student derives the quantum states of Harmonic Oscillator. | | | | | | 2nd
Quarter | 11th | Basics of Quantum
Heat)
Learn about Einste | ` | attice Specific | The student derives the heat capacity of Einstein solid. | | | | | | | 12th | Electron Configura
Learn about the q
bounded by the Co | uantum states of | an electron | The student explains the quantum states of an electron in an atom. | | | | | | | 13th | Electron Configuration of Atom 2 (Spin and Quantum Statistics) Learn about the existence of spin, the outline of the quantum statistics, and the periodic laws of elements. | | | The student explains the electron configuration in an atom. | | | | | | | 14th | Cohesion Mechanism of atoms in materials (Ionic Bond, Covalent Bond and Metallic Bond) Learn the cohesion mechanisms of atoms in materials. | | | The student explains the ionic bond, covalent bond and metallic bonds) Learn the cohesion mechanisms of atoms in materials. | | | | | | | 1501 | Density Functiona
Material Design
Learn the density
principle calculation
functional theory,
using the first-prin | functional theory on based on the c | , the first
lensity
als design | The student explains the nanomaterials design methods. | | | | | | | 16th | Term-end examin | ation | | | | | | | Evaluatio | <u>n Meth</u> | nod and V | Veight (%) | T | T | | 1 | | | | | Ex | amination | Practice &
Presentation | Mutual
Evaluations
between
students | Behavior | Portfolio | Other | Total | | | Subtotal | 80 | | 20 | 0 | 0 | 0 | 0 | 100 | | | Basic Ability | / 20 | | 5 | 0 | 0 | 0 | 0 | 25 | | | Technical
Ability | 50 | | 5 | 0 | 0 | 0 | 0 | 55 | | | Interdiscipli
y Ability | nar 10 | | 10 | 0 | 0 | 0 | 0 | 20 | |