奈良工業高等専門学校		開講年度	平成30年度 (2	018年度)	授業科目	設計工学演習 Ⅱ			
科目基礎情報									
科目番号	0064				専門 / 必	専門 / 必修			
授業形態	演習	演習			数 履修単位	履修単位: 2			
開設学科	機械工学科			対象学年	5				
開設期	通年			週時間数	週時間数 2				
教科書/教材	講師作成の資料による								
担当教員	須田 敦								
1									

到達目標

- 1. 機械構造物の設計者として、工学系知識以外に経営分析、信頼性工学や統計的分析法を学び、企業における設計者の役割および設計プロセスを具体的に表すことができる。
- 2. 工学系設計者として習得しておく主要な機械要素として、ボルト締結理論および軸受、歯車の設計法、また加工技術として溶接法、鋼の表面処理法、腐食現象を理解する。
- 3. 交通関係機械部品に適用される、疲労限度設計法と損傷許容設計法、および疲労安全率、線形累積被害則を適用した寿命評価、破壊力学を 用いたき裂の進展挙動を求める手法を具体的に説明することができる。
- 4. 自動車用車輪の現在の設計の仕組みとその評価方法を説明できる。

ルーブリック

N 2002			
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	機械構造物の設計者として、工学	機械構造物の設計者として、工学	機械構造物の設計者として、工学
	系知識以外に企画、品質、コスト	系知識以外に企画、品質、コスト	系知識以外に企画、品質、コスト
	、納期、試作評価に至るまでの具	、納期、試作評価に至るまでの検	、納期、試作評価に至るまでの検
	体的な検討音法を理解し、企業に	討手法を理解することができる。	討手法を理解することができない
	おける設計者の役割および設計工	企業における設計者の役割および	。企業における設計者の役割およ
	学プロセスを具体的に説明するこ	設計工学プロセスを説明すること	び設計工学プロセスを説明するこ
	とができる。	ができる。	とができない。
評価項目2	機械工学系設計者が習得しておく べき主要な機械要素部品として、 ボルト、軸受、歯車、バネの設計 方法を理解することができる。加 工技術として鋼の表面処理法、腐 食現象を理解することができる。	ボルト、軸受、歯車、バネの設計 方法が理解できる。加工技術とし て鋼の表面処理法、腐食現象が理 解できる。	ボルト、軸受、歯車、バネの設計 方法が理解できない。加工技術と して鋼の表面処理法、腐食現象が 理解できない。
評価項目3	疲労安全率、寿命を求める手法を	疲労安全率、寿命を求める手法を	疲労安全率、寿命を求める手法を
	具体的に説明することができる。	説明することができる。	説明することができない。
評価項目4	アルミニューム製自動車用車輪の	アルミニューム製自動車用車輪の	アルミニューム製自動車用車輪の
	設計の仕組みを理解し,正しく説	設計の仕組みを説明することがで	設計の仕組みを説明することがで
	明することができる。	きる。	きない。

学科の到達目標項目との関係

準学士課程(本科1〜5年)学習教育目標 (2) JABEE基準 (d-2a) JABEE基準 (d-2c) システム創成工学教育プログラム学習・教育目標 D-1

教育方法等

概要	現在の設計工学は、工学系の学問のみならず経営工学、信頼性工学および統計的分析法を駆使して要求された仕様に合った製品を作り出す総合技術である。本講義では企業が取り入れている種々の合理的な設計全般を学習し、具体的な事例として自動車用車輪の設計業務を通しその設計手法を学ぶ。
授業の進め方・方法	前期は企業が取り入れている経営分析、信頼性工学および統計的分析法について学ぶと共に、機械構造物に主に用いられる機械要素部品の設計法と鋼の疲労および破壊力学について学ぶ。 後期は交通関係部品として、鉄道用輪軸と自動車用車輪を取り上げ、企業が実際に行っている疲労限度設計法、線形累積被害則による寿命評価法および破壊力学を応用した評価の事例を学ぶ。
注意点	関連科目: 応用数学、材料力学、金属材料学などとの関連が深い。 学習指針: 今まで学んできた工学系学問以外に、経営分析、信頼性工学、統計的分析法、機械構造物の設計にとって重要な主要な機械要素部品の設計方法、疲労限度設計法、線形累積被害則を適用した寿命評価法、および破壊力学を学び総合的な設計力を理解する。 自己学習: 設計工学で学ぶ総合的な知識は物を生産するあらゆる業界で広く応用できるので、日常生活の中から具体的なテーマと解決手法を自習する。

学修単位の履修上の注意

授業計画

技夫 司世	4			
		週	授業内容	週ごとの到達目標
		1週	設計の概念	広義の設計における担うべき役割について説明できる 。
		2週	企業における設計	企業で行われている設計とは何かを説明できる。
前期 1stQ 1stQ 設計で決定する事項 5週 法律と規格 6週 工学系以外の知識	企業で行われている設計の手順と仕組みを説明できる。			
	1stQ	4週	設計で決定する事項	設計で何を決めるのか、どう評価するのかを説明できる。
		5週	法律と規格	設計上考慮しなければならない法律と規格を説明できる。
		6週	工学系以外の知識	設計品の品質を評価する品質工学および統計的分析手 法を説明できる。
		7週	前期中間試験	授業内容を理解し試験問題に対して正しく解答するこ とができる。
		8週	試験返却・解答	試験問題を見直し、理解が不十分な点を解消する。

		9週	工学系知識 I (材料)	機械構造物に用いられる主要な材料とその特長を説明できる。			
		10週	工学系知識 Ⅱ (表面処理等)	鋼製品の表面硬化法、表面処理法、溶接法を説明できる。			
		11週	機械要素設計 I (ボルト)	ボルト締結理論について説明できる。			
	2ndQ	12週	機械要素設計Ⅱ(歯車、バネ)	歯車およびバネの設計方法について説明できる。			
		13週	機械要素設計Ⅲ(軸受等)	軸受、継ぎ手の設計方法について説明できる。			
		14週	疲れ強さ	疲労、残留応力について説明できる。			
		15週	前期末試験	授業内容を理解し試験問題に対して正しく解答するこ とができる。			
		16週	試験返却・解答	試験問題を見直し、理解が不十分な点を解消する。			
		1週	破壊力学	き裂がある時のき裂の進展挙動と破壊現象を説明することができる。			
		2週	鉄道台車の運動	鉄道台車の運動を説明できる。			
		3週	鉄道用車輪、車軸の設計	鉄道用車輪、車軸の設計方法を説明できる。			
		4週	自動車用車輪の運動	自動車用車輪の運動を説明できる。			
	3rdQ	5週	自動車用車輪の設計	自動車用車輪の設計手順を説明できる。			
		6週	自動車用車輪の法規と規格	自動車用車輪の設計において適用される法規と規格を 説明できる。			
後期		7週	後期中間試験	授業内容を理解し試験問題に対して正しく解答することができる。			
		8週	試験返却・解答	試験問題を見直し、理解が不十分な点を解消する。			
		9週	自動車用車輪の強度評価	自動車用車輪の強度評価方法を説明できる。			
		10週	自動車用車輪の走行試験	自動車用車輪の走行試験方法を説明できる。			
		11週	自動車用車輪の寿命	自動車用車輪の寿命評価方法を説明できる。			
		12週	自動車用車輪の問題点	自動車用車輪の市場トラブルとは何かを説明できる。			
	4thQ	13週	自動車用車輪の対策	市場トラブルに対処する主要な対策を説明できる。			
		14週	設計工学の今後	今後の設計工学で学ぶ知識の展望を説明できる。			
		15週	学年末試験	授業内容を理解し試験問題に対して正しく解答することができる。			
		16週	試験返却・解答	試験問題を見直し、理解が不十分な点を解消する。			
モデル	コアカリ:	キュラム	の学習内容と到達目標				
分類		分野		到達レベル 授業调			

分類		分野	学習内容	学習内容の到達目標		授業週
				説明責任、製造物責任、リスクマネジメントなど、技術者の行動 に関する基本的な責任事項を説明できる。	3	
	工学基礎			現代社会の具体的な諸問題を題材に、自ら専門とする工学分野に 関連させ、技術者倫理観に基づいて、取るべきふさわしい行動を 説明できる。	3	
				技術者倫理が必要とされる社会的背景や重要性を認識している。	3	
				社会における技術者の役割と責任を説明できる。	3	
			技術的財子 (対対の) 技術的財子 (対対の) (対的) (対対の)	情報技術の進展が社会に及ぼす影響、個人情報保護法、著作権な どの法律について説明できる。	3	
				高度情報通信ネットワーク社会の中核にある情報通信技術と倫理 との関わりを説明できる。	3	
		(知的財産、 法令順守、 持続可能性		環境問題の現状についての基本的な事項について把握し、科学技術が地球環境や社会に及ぼす影響を説明できる。	3	
				国際社会における技術者としてふさわしい行動とは何かを説明できる。	3	
基礎的能力				知的財産の社会的意義や重要性の観点から、知的財産に関する基本的な事項を説明できる。	3	
				知的財産の獲得などで必要な新規アイデアを生み出す技法などに ついて説明できる。	3	
				技術者の社会的責任、社会規範や法令を守ること、企業内の法令順守(コンプライアンス)の重要性について説明できる。	3	
				技術者を目指す者として、諸外国の文化・慣習などを尊重し、それぞれの国や地域に適用される関係法令を守ることの重要性を把握している。	3	
				全ての人々が将来にわたって安心して暮らせる持続可能な開発を 実現するために、自らの専門分野から配慮すべきことが何かを説 明できる。	3	
				技術者を目指す者として、平和の構築、異文化理解の推進、自然 資源の維持、災害の防止などの課題に力を合わせて取り組んでい くことの重要性を認識している。	3	
				科学技術が社会に与えてきた影響をもとに、技術者の役割や責任を説明できる。	3	
				科学者や技術者が、様々な困難を克服しながら技術の発展に寄与 した姿を通し、技術者の使命・重要性について説明できる。	3	
	分野別の専 門工学	野別の専 世 大学 機械系分野		標準規格の意義を説明できる。	4	前5,後6
				許容応力、安全率、疲労破壊、応力集中の意味を説明できる。	4	前14
専門的能力				標準規格を機械設計に適用できる。	4	
				ねじ、ボルト・ナットの種類、特徴、用途、規格を理解し、適用 できる。	4	前11

				ボルト・ナット結合	合における締め付けトル	ノクを計算できる。	4	前11
				ボルトに作用するも	せん断応力、接触面圧を	計算できる。	4	前11
				軸の種類と用途を理	2解し、適用できる。		4	前13
				軸の強度、変形、危	5険速度を計算できる。		4	前13
				キーの強度を計算で			4	
				軸継手の種類と用途	🗈 を理解し、適用できる	5.	4	前13
				滑り軸受の構造と種	種類を説明できる。		4	前13
				転がり軸受の構造、	種類、寿命を説明でき	きる。	4	前13
				歯車の種類、各部の できる。)名称、歯型曲線、歯の	大きさの表し方を認	^{兑明} 4	前12
				すべり率、歯の切下	げ、かみあい率を説明	見できる。	4	前12
				標準平歯車と転位歯	車の違いを説明できる	5.	4	前12
				標準平歯車について	、歯の曲げ強さおよび	が歯面強さを計算でき	きる 4	前12
				歯車列の速度伝達と	とを計算できる。		4	前12
				企業等における技術	前者・研究者等の実務を	と認識している。	3	
				企業人としての責任 ることができる。	£ある仕事を進めるた&	りの基本的な行動を」	上げ 3	
	態度・志向 性(人間力)	態度・志向性			望生面や社員の価値観な 美を判断することの重要			
				企業には社会的責任	Eがあることを認識して	こいる。	3	
				企業が国内外で他を るか説明できる。	上(他者)とどのような関	係性の中で活動して	[U] 3	
				調査、インターンシ の抱える課題を説明	ップ、共同教育等を迫 すできる。	通して地域社会・産業	^{美界} 3	
分野横断的			カ 態度・志向	企業活動には品質、 ことを認識している	コスト、効率、納期なる。	いどの視点が重要では	^{ある} 3	
能力			性	社会人も継続的に成している。	えしていくことが求め	られていることを読	忍識 3	
				技術者として、幅位とされることを認識	い人間性と問題解決力 はしている。	こ、社会貢献などが必	沙要 3	
				技術者が知恵や感性、チャレンジ精神などを駆使して実践な活動を行った事例を挙げることができる。		5動 3		
				高専で学んだ専門分野・一般科目の知識が、企業等でどのように活用・応用されているかを認識できる。			うに 3	
				企業人として活躍す	「るために自身に必要な)能力を考えることだ	ر _{ير} 3	
				コミュニケーション 能力」の必要性を認	√能力や主体性等の「ネ ឱ識している。	t会人として備える/	(き 3	
評価割合								
			試験		レポート	合計		
総合評価割合	<u> </u>		80		20	100		
基礎的能力 0				0	0	0		
専門的能力 80				20	100	100		
分野横断的能	<u></u> きカ		0	<u> </u>	0	0		