奈良工業高等専門学校		開講年度	令和02年度(2020年度)	授業科目	油空圧制御工学	
科目基礎情報							
科目番号	0023			科目区分	専門/選	択	
授業形態	講義			単位の種別と単位数	立の種別と単位数 学修単位: 2		
開設学科	システム創成工学専攻(機械制御システムコース)		対象学年	専1	専1		
開設期	前期			週時間数	2	2	
教科書/教材	適宜プリント資料を配布						
担当教員	早川 恭弘						
到海口槽							

- 以下の項目を理解し、説明ができる。
 1)メカトロニクスにおけるアクチュエータ
 2)油空圧と電動アクチュエータ
 3)空気圧技術に使われる機器の概説
 4)空気圧制御用電磁弁の種類
 5)空気圧システム回路
 6)空気圧制御手法
 7)空気圧システムのモデル化

- 0) 三 X (工 利 即 子 公 7) 空気圧システムのモデル化 8) 空気圧回路応用例 9) 油圧回路 10) 油圧アクチュエータ 11) 油空圧の応用

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安			
評価項目1	メカトロニクスにおけるアクチュ エータについて完全に理解してい る. また,油空圧と電動アクチュ エータの比較が完全にできる.	メカトロニクスにおけるアクチュ エータについて一部理解している . また,油空圧と電動アクチュエ ータの比較が一部できる.	メカトロニクスにおけるアクチュ エータについて理解できていない . また,油空圧と電動アクチュエ ータの比較ができない.			
評価項目2	空気圧技術に使われる機器を完全 に理解している. また,空気圧制 御用電磁弁の種類について完全に 理解している.	空気圧技術に使われる機器を一部 理解している.また,空気圧制御 用電磁弁の種類について一部理解 している.	空気圧技術に使われる機器を理解していない、また、空気圧制御用電磁弁の種類について理解していない.			
評価項目3	空気圧システム回路及び空気圧制 御手法を完全に理解している.	空気圧システム回路及び空気圧制 御手法を一部理解している.	空気圧システム回路及び空気圧制 御手法を理解していない.			
評価項目4	空気圧システムのモデル化及び , 空気圧回路応用が完全にできる	空気圧システムのモデル化及び , 空気圧回路応用が一部できる.	空気圧システムのモデル化及び , 空気圧回路応用ができない.			
評価項目5	油圧回路及び油圧アクチュエータ を完全に理解している.	油圧回路及び油圧アクチュエータ を一部理解している.	油圧回路及び油圧アクチュエータ を理解していない.			

学科の到達目標項目との関係

JABEE基準 (d-2a) JABEE基準 (d-2b) システム創成工学教育プログラム学習・教育目標 D-1

教育方法等

概要	メカトロニクスにおけるアクチュエータの役割及び人間親和な機器開発に必要不可欠な空気圧・油圧アクチュエータの構造,システム構成,制御方法について学ぶ.
授業の進め方・方法	座学による講義が中心である. 講義項目ごとに演習問題に取り組み, 各自の理解度を確認する.
	関連科目 制御工学 学習指針
注意点	産業機器に利用されているアクチュエータの中で,最近,人間親和なアクチュエータとして注目され,災害救助用ロ ボットへの応用も検討されている空気圧及び油圧アクチュエータの構造について理解する.また,油空圧アクチュエー タをコンピュータにより制御するための手法について理解する.

事前学習:受講前に教科書及び配布プリントの授業範囲を事前に読んでおくこと. 事後展開学習:授業に関連する課題(配布プリント課題など)を自分で解き,次の授業時に提出する.

学修単位の履修上の注意

成績評価における課題により,自学自習の取り組みを評価する.

授業計画

	1					
		週	授業内容	週ごとの到達目標		
前期		1週	ガイダンス	本講義の概要及び成績評価方法を理解する.		
		2週	メカトロニクスにおけるアクチュエータ	アクチュエータ及びセンサの構成を説明できる.		
		3週	油空圧と電動 アクチュエータ	油空圧及び電動アクチュエータの比較ができる.		
		4週	空気圧技術に使われる機器の概説	空気圧システム構成機器の概要を説明できる.		
	1stQ	5週	空気圧制御用電磁弁の種類	アクチュエータを制御するための弁について説明できる.		
		6週	空気圧システム回路	空気圧回路の構成方法を説明できる.		
		7週	空気圧制御手法	空気圧システムの制御方法を説明できる.		
		8週	空気圧システムの モデル化	空気圧駆動回路のモデル化の方法を説明できる.		
	2ndQ	9週	空気圧回路応用例	空気圧システムの利用例を説明できる.		
		10週	油圧回路	油圧システムの概要を理解する.		
		11週	油圧アクチュエータ1	油圧と空気圧アクチュエータの比較ができる.		

	12週	油圧アクチュエータ 2			油圧と空気圧アク	油圧と空気圧アクチュエータの比較ができる.		
	13週	油空圧の応用1	ー 油空圧の応用 1			介護機器への利用を理解する.		
	14週	油空圧の応用2	油空圧の応用 2			災害救助への利用を理解する.		
	15週	期末試験			授業内容を理解し	授業内容を理解し,試験問題に対して正しく解答できる		
	16週							
モデルコアカリキュラムの学習内容と到達目標								
分類	分野	野 学習内容 学習内容の到達目標 到達レベル 授業週				レベル 授業週		
評価割合								
	試験	課題	相互評価	態度	ポートフォリオ	その他	合計	
総合評価割合	80	20	0	0	0	0	100	
基礎的能力	60	0	0	0	0	0	60	
専門的能力	10	10	0	0	0	0	20	
分野横断的能力	10	10	0	0	0	0	20	