和歌山工業高等専門学校			開講年度	令和03年度 (2	2021年度)	授業科目	物性物理			
科目基礎		_ ·•			-,					
科目番号 0027					科目区分	専門 / j				
授業形態		授業			単位の種別と単位	位数 学修単位	立: 2			
開設学科		メカトロニクス工学専攻			対象学年	専2				
開設期		前期	1			2				
参考書: 教科書/教材 郎著, 裳菊 び配布プリ			「電子物性工学 (電 華房、「熱力学・紛 リント	電子物性工学 (電子通信大学講座 (6))」,青木 昌治 房、「熱力学・統計力学」,原島 鮮著,培風館、「: ント			量子論 (基礎物理学選書)」, 小出 昭一礎」, 赤崎 正則他著, 産業図書、およ			
担当教員		直井 弘之	, =							
到達目標	Ē									
1. ミクロ 2. 物質の 計算できる	D特性を理解	マクロな視点 gするための	から物質の性質を考 視点として、統計力	考察することができ ロ学の基本的な考え	る。 方を理解し、それ	らを用いて平均	エネルギーなどのマクロな物理諸量を			
ルーブリ	リック									
			理想的な到達レ	ベルの目安	標準的な到達レベルの目安		未到達レベルの目安			
物質の性質 点とマクロ	質について、 □な視点から	ミクロな視 らの理解度	講義で扱った範囲の物質の性質に ついて、ミクロな視点とマクロな 視点から説明できている。		講義で扱った範囲の物質の性質に ついて、限定的な視点から説明で きている。		て 物質の性質を説明する際に、視点で を定めることができず、説明も全くできていない。			
統計力学の手法を用いたマク! 物理量についての計算力			講義で扱った範囲の統計力学の手 法を用いてマクロな物理量を正確 に計算できている。		講義で扱った範囲の統計力学の手 法を用いてマクロな物理量を限定 的に計算できている。					
学科の到	達目標項	目との関								
JABEE C-	1									
学習目標										
教育方法	等	1								
概要		特異な物: 、「物質	埋概念や統計的手法 の性質について理	Sを含めた、「物質」 理解・考察する能力	」を取り扱うため を養う。	の物理学的視点	について学習し、物性物理の立場から			
授業の進め	 b方・方法		i」の性質について理解・考察する能力を養う。 :もに原則、授業毎に課題を実施する。適宜プリントで補足しながら説明する。講義は英語で行う。							
注意点		こと。ま 事前学習 意味およ 。 事後学習	 科目は学修単位であるため、事前事後学習として課題を実施します。授業の進み方が速いことから、下記に注意するときまた、講義は英語で行うことにも注意すること。							
授業の属	性·履修	を上の区分								
	イブラーニ		□ ICT 利用		□ 遠隔授業対応	<u>~</u>	□ 実務経験のある教員による授業			
授業計画										
		週	授業内容			週ごとの到達目	標			
	1stQ	1週	†リエンテーション 物性物理の視点		ā	物質の性質について、ミクロな視点とマクロな視点を				
						区別できる。				
		2週	ミクロの世界1 (不確定性)		不確定性原理を定性的に説明できる。 量子井戸の中では、電子(正孔)のエネルギーが離散					
前期		3週	ミクロの世界 2 (量子井戸)			的になることを定性的に説明できる。				
		4週	ミクロの世界3 (トンネル効果)			トンネル効果が起こる機構を定性的に説明できる。				
		5週	分子間力と気体・液体・固体			物質の三態間の状態変化について、分子間力とエネル				
		6週	う			ギーの観点から説明できる。 固体中の自由電子や、気体・液体中の分子はすべて平均化された物理量を有しているわけではなく、実際はおのおのが異なった物理量を有しており、それらを統計的に扱う手法が分布関数であることを定性的に説明できる。				
		7週	→布関数(Ⅱ) マクスウェル-ボルツマンのエネルギー・速度分布則を用いたマクロ物理量の計算			マクスウェル-ボルツマンのエネルギー分布あるいは速度分布を用いて、古典理想気体について、種々のマクロな物理量について計算できる。				
		8週	量子統計・古典統計			マクスウェル-ボルツマン統計、フェルミ-ディラック統計、ボーズ-アインシュタイン統計を区別し、それぞれの統計に従う粒子を説明できる。				
	2ndQ	9週	実在気体の状態方程式			理想気体と実在気体を区別し、実在気体の状態方程式 のいくつかについて、その概要を説明できる。				
		10週	国体物性1 (金属・絶縁体・半導体の導電率)			ミクロの構成要素である電子の属性から導電率等の巨視的な物理量を説明できる。				
			団体物性2 (原子の結合と金属・絶縁体・半導体、 ニネルギーバンド図)			金属・絶縁体・半導体ができる機構の概要を原子の結 合論を用いて説明し、これらのエネルギーパンド図を 描くことができる。				
		12週	国体物性 3 (半導体の基本物性とその制御法)			ドーピングによるキャリア濃度の制御法および半導体 混晶によるバンドギャップエネルギーの制御法を説明 できる。				
		13週	プラズマの基礎 1 (直流プラズマ)			気体プラズマ状態について、その概要を説明できる。 直流印加電圧による気体プラズマの生成法を説明でき る。				

	14週 プラズマの基礎 2 (RFプラズマ)				交流印加電圧による気体プラズマの生成法を説明できる。						
	15週	プラズマの基礎:	3 (その他のプラズマ)	特殊なものを含めて個々のプラズマについて概観し、 プラズマについての見聞を拡げる。						
	16週	期末試験			期末試験						
モデルコアカリキュラムの学習内容と到達目標											
分類	分野	学習内容	学習内容の到達目	票	到達レベル 授業週						
評価割合											
		試験	試験		合	計					
総合評価割合	·	50	50		10	00					
基礎的能力		0	0		0						
専門的能力		50	50		10	00					