開設	組みを理解している。 イジタル化の仕組みを理論理回路の関係性を理解	コンピュータの位 里解している。 解している。 よる基本的なプロ	土組みを理解す	単位数 履修 3 2 , (ムイスリ出	月 / 必修 多単位: 1 品版)	
授業形態 講然 選出 地域 と	青木 征男 著,「情報の 引,山本 綱之 の仕組みやディジタルコ 組みを理解している。 イジタル化の仕組みを理 論理回路の関係性を理解 し,プログラム言語によ	コンピュータの位 里解している。 解している。 よる基本的なプロ	単位の種別と 対象学年 週時間数 ータの仕組み」	単位数 履修 3 2 , (ムイスリ出	9単位: 1	
開設期 機関 機関 機関 機関 機関 機関 機関 機	青木 征男 著,「情報の 引,山本 綱之 の仕組みやディジタルコ 組みを理解している。 イジタル化の仕組みを理 論理回路の関係性を理解 し,プログラム言語によ	コンピュータの位 里解している。 解している。 よる基本的なプロ	対象学年 週時間数 一夕の仕組み」	3 2 , (ムイスリ出 る。		
開設期 機関 大き 大き 大き 大き 大き 大き 大き 大	青木 征男 著,「情報の 引,山本 綱之 の仕組みやディジタルコ 組みを理解している。 イジタル化の仕組みを理 論理回路の関係性を理解 し,プログラム言語によ	コンピュータの位 里解している。 解している。 よる基本的なプロ	週時間数 - 夕の仕組み」 土組みを理解す	2 , (ムイスリ出 る。	.版)	
教科 大き 大き 大き 大き 大き 大き 大き 大	3,山本 綱之 の仕組みやディジタルコ 組みを理解している。 ィジタル化の仕組みを理論理回路の関係性を理解している。 にし、プログラム言語による 数と10進数の間、10進	コンピュータの位 里解している。 解している。 よる基本的なプロ	ータの仕組み」 士組みを理解す	, (ムイスリ比 る。	版)	
国当	3,山本 綱之 の仕組みやディジタルコ 組みを理解している。 ィジタル化の仕組みを理論理回路の関係性を理解している。 にし、プログラム言語による 数と10進数の間、10進	コンピュータの位 里解している。 解している。 よる基本的なプロ	土組みを理解す	· · · · · · · · · · · · · · · · · · ·	版)	
型当達目標 大学 大学 大学 大学 大学 大学 大学 大	3,山本 綱之 の仕組みやディジタルコ 組みを理解している。 ィジタル化の仕組みを理論理回路の関係性を理解している。 にし、プログラム言語による 数と10進数の間、10進	コンピュータの位 里解している。 解している。 よる基本的なプロ	土組みを理解す	· · · · · · · · · · · · · · · · · · ·		
選問 大き では、	の仕組みやディジタルコ組みを理解している。 イジタル化の仕組みを理論理回路の関係性を理解し、プログラム言語による	里解している。 解している。 よる基本的なプロ				
表 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	組みを理解している。 イジタル化の仕組みを理論理回路の関係性を理解し、プログラム言語による	里解している。 解している。 よる基本的なプロ				
慢 (2数が 与てルで コみを表。 コみテロラ の	数と10進数の間, 10進 16進数の関の投与変換	Ι.				
平価項目1 (基と) は え デき こと 9 グム 関						
平価 項目1	数と10進数の間, 10進 16進数の関の超互変換	良		可		不可
平価項目3	.10進数の间の相互変換 在にできる	2進数と10進数 と16進数の間 る	数の間, 2進数 の変換ができ	数 2進数と10進数の間, 2進数 さ16進数の間の変換が変換 表をみながらできる		左記に達していない。
評価項目 3		与えられたル- て,画像・文章 ルデータ化する	字をディジタ	簡単な画像・文字のディジ タルデータ化を見ながら , 画像・文字をディジタル データ化することができる		左記に達していない。
評価項目 4 学科の到達目標項目とののとうが関連を受験的である。 とう ・ と 教 のすりの の 方 まで ー 基 学 授 た ユ 授 ブロま 成 2 レ 再 理 修科 で 報 こ と で か で か で か で か で か で か で か で と に は が の は アテ。 は で で で で で で で で で で で で で で で で で で	ピュータの動作のしく , 論理回路との関連性 解し, 論理回路の真理 書きながら説明できる	コンピュータ(みと, 論理回 を, 真理表を) きる。	の動作のしく 路との関連性 用いて説明で	コンピュータ みと, 論理回 を説明できる	の動作のしく 路との関連性 。	左記に達していない。
学科の到達目標項目との関 教育方法等 東で 一 基	ピュータの動作の仕組 プログラムの実行をス プごとに説明でき,プ ラム言語によるプログ を作成できる	コンピュータの みとプログラブ 明でき,プログラブ よるプログラブ	ムの実行が説 グラム言語に	コンピュータ みが説明でき がら, プログ 単なプログラ る	の動作の仕組 , 見本をみな ラム言語で簡 ムを作成でき	左記に達していない。
教育方法等	 係					
実で 一 様 育 概3の 大 育 概3の 大 育 概3の 大 育 概3の 大 元 工 授プロ常志 大 瀬 のす 夕 のジ生・、 津回の一 験度 上目 のリンとに 大 瀬 のは アテ。は で 一 様 習 概3の で 一 様 習 概3の で 一 様 習 概3の で 一 様 習 概3の で 一 様 で 和 で ト は が の は アテ。 と は アテ・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・						
授業の方式 授業の方式 行式 ではますが のがま活理 のがま活理 のがま活理 のがまる がある。 のがまる がある。 のがまる。 では、 のがまる。 では、 のがまる。 では、 のがまる。 では、 のがまる。 では、 のがまる。 では、 では、 では、 では、 では、 では、 では、 では、	われるかなどの知識が必 門の別:専門 学習の分 る学問分野:情報学/記 目標との関連:本科目に 要:現代社会では、日常	必要である。 分野:工学系共近 計算基盤/計算様 は総合理工学科 <i>0</i> 常生活と産業活動	・ 機システム D学習教育目標 ないずれの局面	: 「③基盤となる においても、 -	る専門性の深化 ディジタル化さ	:界のデータがコンピュータ ;」のための科目である。 :れた情報に触れたり処理し :タル情報を処理するコンピ
本科目は 履修のア 情報と 演習には	法: クタによるスライドの技術を表するデジタル技術解が深まるように適宜, 方法: 期試験の結果をそれぞれ 課題を評価する(30% 原則実施しない。 不十分であると判断され	析との関連に注意 演習やレポート 1同等に評価する	意しながら授業 を課す。 る (70%)。	を進める。	到達を目指す。	
関連科目 受講上の 各時限の	,3学年の課程修了のだけバイス:ラシーで学ぶ内容が基礎 ,演習前の授業で学習し要に応じてレポート課題:情報リテラシー(15:電子情報回路設計(5)	楚となるので, ∪た内容をよく役 類を課すので,必 ∓) 5年)	事前に行う準備 复習してから臨	学習として, (が必須の科目である。
	アドバイス : 開始時刻に遅刻, 欠課を		☑ 遠隔授業対	+広		務経験のある教員による授
<u>」 アクティフフー―ンク</u> X履修	開始時刻に遅刻,欠課を で欠課1回とする。 		凶 、逐門技業外	טווני	凶 夫孙	カ性獣ツめる我見による技
1,541.5	開始時刻に遅刻, 欠課を で欠課1回とする。					
受業計画 週	開始時刻に遅刻,欠課を で欠課1回とする。 					

1週 ガイダンス, 概説	びタル化の ディジタル - ドウェア 。		
関係 きる。 3週 負の数と補数の学習,減算処理 負の数の表し方や進数変換の仕組みを用いて減算ができる。 文字符号,サンプリングと量子化 文字のデータ表現,アナログデータのディジグ	びタル化の ディジタル - ドウェア 。		
3 rdQ	ジタル化の ディジタル - ドウェア 。		
3rdQ 4週 又子付号、ザンブリングと量子化 仕組みが分かる。	ディジタル - ドウェア 。		
6週 ディジタルデータとアナログ信号の変換 DA変換, AD変換の手法が分かる。 7週 まとめと復習 数値データ,画像、文字など各種データのデルを説明できる。 8週 後期中間試験の返却と解答解説 コンピュータの基本的な構成が分かり、ハーに関する基礎的な知識を活用できる。 10週 2値論理,真理表,論理式,論理回路 2値論理,論理の表現を理解し,活用できる。 11週 論理式の単純化,ベン図,ブール代数 論理の表現,簡単化,ベン図,ブール代数を理用できる。 11週 色々な論理回路(半加算回路,全加算回路) 種々の論理回路について理解し,活用できる。	- ドウェア		
表とめと復習 数値データ、画像、文字など各種データのデ化を説明できる。 数値データ、画像、文字など各種データのデ化を説明できる。 8週 後期中間試験の返却と解答解説	- ドウェア		
後期 後期中間試験 (後期中間試験の返却と解答解説 コンピュータの基本的な構成が分かり、ハー で関する基礎的な知識を活用できる。 10週 2値論理、真理表、論理式、論理回路 2値論理、論理の表現を理解し、活用できる。 11週 論理式の単純化、ベン図、ブール代数 調理の表現、簡単化、ベン図、ブール代数を理用できる。 12週 色々な論理回路(半加算回路,全加算回路) 種々の論理回路について理解し、活用できる。	- ドウェア		
後期中間試験の返却と解答解説 コンピュータの基本的な構成が分かり、ハーロンピュータの基礎構成 コンピュータの基礎構成 に関する基礎的な知識を活用できる。	0		
10週2値論理, 真理表, 論理式, 論理回路2値論理, 論理の表現を理解し, 活用できる。11週論理式の単純化, ベン図, ブール代数論理の表現, 簡単化, ベン図, ブール代数を理用できる。4thQ12週色々な論理回路(半加算回路,全加算回路)種々の論理回路について理解し,活用できる。	0		
11週 論理式の単純化, ベン図, ブール代数 論理の表現, 簡単化, ベン図, ブール代数を理用できる。 4thQ 12週 色々な論理回路 (半加算回路, 全加算回路) 種々の論理回路について理解し, 活用できる。			
11년 開催式の単純化, ベンタ, ブールバ数 用できる。 12년 色々な論理回路 (半加算回路, 全加算回路) 種々の論理回路について理解し, 活用できる。	理解し,活		
Terror	論理の表現,簡単化,ベン図,ブール代数を理解し,活 用できる。		
13週 色々な論理回路 (記憶回路) 種々の論理回路について理解し, 活用できる。	0		
	0		
14週 コンピュータにおけるプログラム実行の仕組み, プロ コンピュータにおけるプログラム実行の仕組み グラミング言語の概要 グラミング言語の概要について理解できる。	1み, プロ		
15週 後期末試験			
16週 後期末試験の返却と解答解説			
モデルコアカリキュラムの学習内容と到達目標			
分類 分野 学習内容 学習内容の到達目標 到達レベル 授			
基礎的能力 工学基礎 情報リテラ 情報リテラ シー コンピュータのハードウェアに関する基礎的な知識を活用できる 3			
評価割合			
試験課題合計			
総合評価割合 70 30 100	100		
基礎的能力 0 0 0	0		
専門的能力 70 30 100			
分野横断的能力 0 0 0 0			