Tsuyama College	Year	2021	Course Title	Applied Mathematics II
Course Information	Course Category	General / Compulsory		
Course Code	0089	Credits	School Credit: 2	
Class Format	Lecture	Student Grade	4th	
Department	Department of Integrated Science and Technology Electrical and Electronic Systems Program	Classes per Week	2	
Term	Year-round			
Textbook and/or Teaching Materials	Textbook: "Ouyousuugaku" (Morikitasyuppan)			
Instructor	SAEKI Fumihiro,KATO Manabu,SHIMADA Takao,MIYASHITA Takuya,SHIMADA Hirohiko			

Course Objectives

Learning purposes :
Students will acquire the mathematical knowledge, calculation techniques, and applied abilities necessary to solve basic engineering problems through Laplace transform, vector analysis, Fourier series, and Fourier transform.

Course Objectives :

1. To understand the concepts of the Laplace transform and apply them to the solution of differential equations.
2. To understand the concepts of Fourier series and Fourier transform, and be able to find the Fourier transform of basic functions. 3. To understand the basic concepts of vector analysis such as gradient, divergence, rotation, line integral, and surface integral, and be able to solve problems related to them.

Rubric

	Excellent	Good	Acceptable	Not acceptable
Achievement 1	The student can solve applied problems related to Laplace transform	The student an solve about 70\% of the basic problems related to aplace transform.	The student can solve about 60\% of the basic problems related to Laplace transform.	The student can not solve about 60\% of the basic problems related to Laplace transform.
Achievement 2	The student can solve applied problems related to Fourier series and Fourier transform.	The student can solve about 70\% of basic problems related to Fourier series and Fourier transform	The student can solve about 60\% of basic problems related to Fourier serias and Fourier transform.	The stadent can not solve about 60\% of basic problems related to Fourier series and Fourier transform.
Achievement 3	The student can solve applied problems related to vector analysis.	The student can solve about 70\% of basic problems related to vector analysis.	The student can solve about 60\% of basic problems related to vector analysis.	The student can not solve about 60\% of basic problems related to vector analysis.

Assigned Department Objectives

Teaching Method

	General or Specialized : General Field of learning : Natural sciences, Common and basic Foundational academic disciplines : Mathematical science / mathematics / analysis basics Relationship with Educational Objectives : This class is equivalent to "(2) Acquire basic science and technical knowledge". Relationship with JABEE programs : The main goal of learning / education in this class are "(A), and A-1". Course outline : The 1st semester deals with Laplace transform, Fourier series, and Fourier transform. The 2nd semester deals with vector analysis.
Course method : The course is based on lectures with exercises given to further deepen understanding. Grade evaluation method : Exams [60\%] + Others (exercises, reports, etc.) [40\%]. Regular examinations will be conducted a total of 4 times, and the evaluation ratios will be the same. Additional assignments may be given depending on grades. Re-examinations, in principle, will not be conducted.	
Precautions on the enrollment : Students must take courses to complete the course of the academic year (the number of absence hours must be less than one-third of the class hours). Course advice : Review and confirm the contents of mathematics up to the third grade, especially trigonometric functions, space vectors, determinants, differential calculus (including partial derivatives), and integral calculus (including multiple integrals). As a preparatory study, review the integration by parts in Differential and Integral I. Foundational subjects : Fundamental mathematics (1st year), Fundamental Linear Algebra (2nd), Differential and Integral I, II (2nd, $3 r d), ~ F u n d a m e n t a l ~ D i f f e r e n t i a l ~ E q u a t i o n s ~(3 r d) ~$	
Related subjects :	
Physics after 4th year, specialized subjects	
Attendance advice :	
Students who join the class after the attendance verification are marked as tardy. Three tardy arrivals count	
as one absence.	

Characteristics of Class / Division in Learning

\square Active Learning	\square Aided by ICT

Must complete subjects

Course Plan

			Theme	Goals
	$\begin{aligned} & \text { 1st } \\ & \text { Quarter } \end{aligned}$	1st	Guidance, Laplace transform	Students can find the Laplace transform of basic functions.
		2nd	Inverse Laplace transform	Students can find the inverse Laplace transform of the basic function.
		3rd	Differentiation formulas and solutions for differential equations	Students can use the Laplace transform to solve basic differential equations.
		4th	Exercise	Confirm basic matters
		5th	Unit step function and delta function	Students can find the Laplace transform of the unit step function and the delta function.
		6th	Convolution	Students can calculate the convolution of basic functions.
		7th	Linear system	For linear systems, students can find the response

1st semester mid-term exam

For linear systems, students can find the response

2nd
10th
11th

Quarter
Return and commentary of exam answers, periodic function

12th
13th

14th	Fourier in
Exercise	
15 th	1s

Students can find the integral of the period of the periodic function and the basic trigonometric function.
Students can find the Fourier series of the basic periodic function,
Students can find the complex Fourier series of the basic periodic functions.
Students can find the Fourier transform of the basic function.
Students can solve problems that apply the Fourier integral theorem.
Confirm basic matters
Confirm basic matters
Students can calculate the dot product of vectors.
Students can calculate the cross product of vectors.
Studentsan find the gradient of the scalar field.
Students can find the divergence of the scalar
field field.
Students can find the rotation of the vector field.
Students can find the line integral of the scalar field.
Students can find the line integral of the vector field.

Students can find the parametric representation of the surface, the tangent vector and the normal vector of the surface.
Students can find the surface integral of the scalar field.
Students can find the surface integral of the vector field.
Confirm basic matters
Students can use Gauss's divergence theorem to find the surface integral on the surface of solids.
Using Stokes' theorem, students can find the line integral along the boundary of a curved surface.

Confirm basic matters

Evaluation Method and Weight (\%)

	Examination	Reports	Total
Subtotal	70	30	100
Basic Proficiency	70	30	100
Specialized Proficiency	0	0	0
Cross Area Proficiency	0	0	0

