広島商船高等	専門学校	開講年度 令和02年度 (2	2020年度)	授業科目	勿理		
———————— 科目基礎情報			,				
科目番号	1921007	7	科目区分	一般 / 必修			
授業形態	講義		単位の種別と単位	,			
	一般教科		対象学年	2	2		
 開設期	通年		週時間数	2			
教科書/教材	「物理基(物理)	礎」高木堅志郎、植松恒夫編(啓林館 過去問演習」藤原滋泰(http://www	的、「物理」高木堅志郎、植松恒夫編(啓林館)、「学習到達度試験 v.hiroshima-cmt.ac.jp/faculty/ippan/007.html)				
担当教員	藤原 滋泰						
到達目標							
(1) 物体に力が働いた (2) エネルギーと仕事	の関係、エ	状態を理解出来る様になり、具体的な ネルギー相互の変換、エネルギー保存 な波である音や光について理解し、波	則を学び、理解を深	められる様になる	う。 様になる。		
		理想的な到達レベルの目安	標準的な到達レベ	日安	未到達レベルの目安		
			力の種類と単位、				
評価項目1		カの概念と各法則について理解しており、複雑な合成や分解の計算結果を運動方程式に正しく代入し、計算することも出来る。	力の権規と単位、 力の合成と分解、 釣り合い、作用・尿 性の法則、運動の 明でき、運動方程	力の成分、力の 反作用の法則、慣 法則について説	力についての基本的な概念を説明できず、力についての法則も理解出来ない。 運動方程式を立てることも出来ない。		
評価項目2		複数の力が働く場合でも運動方程 式を立てることが出来、それらを 正しく連立して解くことができる 。摩擦角についての問題も解くこ とができる。	張力が働く場合の 力が働く2物体の 働く場合の運動、 場合の運動、圧力 基本的な問題を解	運動、摩擦力が 空気抵抗が働く と浮力について	力の働きについて説明できない。 または、カのベクトルを図形に記入することが出来ない。よって、 運動方程式を立てることも出来ない。		
評価項目3		波の位相、横波と縦波、波の独立性と重ね合わせの原理、定常波、自由端反射と固定端反射についての応用的な問題を解くことが出来る。	媒質の振動、等速、波の位相、横波 立性と重ね合わせ、自由端反射と固 ての基本的な問題	と縦波、波の独 の原理、定常波 定端反射につい	波や等速円運動、単振動の基本的な概念を理解しておらず、波についての基本的な物理量の計算ができない。自由端や固定端で反射した波についての簡単な作図もできない。		
学科の到達目標項	目との関	· 係	•				
教育方法等							
概要	(1) 自動車の様な乗り物の運動や、ボールの運動の様な、速さや動く向きが絶えず変化し、良く観察すると複雑な運動 正確に表す方法を学ぶ。 (2) 物を持ち上げたり運んだりするには力が必要であり、身の回りの運動する物体には、重力や摩擦力が働いている。 の様な力の性質を学び、物体に力が働いた時の運動状態について学習する。 (3) 運動がエネルギー保存則により理解出来る事を学び、エネルギーと仕事の関係、エネルギーの種類と相互変換など 学習する。 (4) 波の基本的性質を学び、身近な波である音や光について理解し、波についての各種の物理量を計算できる様になる						
(1) 講義を行い、ノートをとってもらった後に、演習プリントを配布し、問題を解いてもらう。 (2) 問題を解き、発表する際には、質疑応答を行うことで互いの理解を深める様にする。 (3) 理解した内容をチェックするために、Blackboardのオンラインテストを受講して下さい。 (4) Blackboardから配信している、学習到達度試験対策の電子書籍をダウンロードして、問題演習							
(1) 物理量の持つ意味と単位を明確に理解する。例えば、電子、電流、磁界、加速度、力、運動の法則、運動方程式ーメントと重心、熱量、比熱、理想気体といった用語を自分の言葉で説明出来るくらい明確に理解する。用語の捕ら方の違いから来る誤解を招かない様に注意する。 (2) 用語の意味を踏まえた上で、法則の意味(イメージ)がつかめているかどうか、公式の導出過程が解ったかどう確認する。 ノートに枠で囲ってある式は必ず覚える。 (3) 特に試験前には、演習プリントを自力で解き直す(最初から、ノートや解答を見て答えだけを探そうとしない)分で考えながら解く事で、法則の適用の仕方を身に付ける。 (4) 授業態度を含め、あたりまえの事をきちんとやる。苦手だからこそ、ノート、演習プリントは完全に提出できる毎時間、常に整えておきましょう。 試験問題の大半を占める演習プリントの問題を解ける様にしておく。解けない場合は、必ず質問して下さい。質問をる時は、ノートやプリントを持つて来て下さい。 (5) 何が足りなかったから解けなかったのか、何が理解出来ていれば解けていたのかを認識出来る様に、ある程度の間を掛けて頑張って下さい。 (6) 専門科目の「工業力学」、「材料力学」、「電気回路」、「電子電気工学」、「電磁気学」、「応用物理」等にして行く為の基礎を取り扱う。							
授業計画							
	週		J.	過ごとの到達目標			
		1.運動の法則	1 是 1	1-(1) 慣性の法則、運動の法則について説明でき、問題を解くことができる。 1-(2) 運動方程式、重力と質量、単位と次元について説明でき、運動方程式を解くことができる。			
	2週	2. 運動方程式の応用	2	!-(1) 張力が働く場			

3週

4週

5週

6週

7週

8週

1stQ

前期

2. 運動方程式の応用

2. 運動方程式の応用

2. 運動方程式の応用

3. 仕事とエネルギー

3. 仕事とエネルギー

前期中間試験 答案返却・解説 2-(2) 摩擦力が働く場合の運動、静止摩擦力、摩擦角、動摩擦力についての問題を解くことができる。

2-(3) 空気抵抗が働く場合の運動について説明でき、 運動方程式を解くことができる。

2-(4) 圧力と浮力についての計算ができる。

3-(2) 負の仕事、曲面に沿って動く場合の仕事

3-(1) 仕事の原理、仕事、仕事率

2		9週	3. 仕事とエネルギー			3-(3) 物体の運動: 3-(4) 運動エネル:	3-(3) 物体の運動エネルギーに関する計算ができる。 3-(4) 運動エネルギーと仕事に関する計算ができる。			
		10週	3. 仕事とエネルギー				3-(5) 重力による位置エネルギーに関する計算ができ			
		11週	3. 仕事とエネルギー			3-(6) 弾性力によっきる。	3-(6) 弾性力による位置エネルギーに関する計算がで			
	2ndQ	12週	3. 仕事とエネルギー			3-(7) 力学的エネルな物理量の計算に	3-(7) 力学的エネルギー保存則について理解し、様々 な物理量の計算に利用できる。			
		13週	4. 温度と熱			て理解している。	4-(1) 原子や分子の熱運動と絶対温度との関連について理解している。 4-(2) 物体の熱容量と比熱について理解している。			
		14週	4. 温度と熱			状態に達すること 4-(4) 熱量の保存	4-(3) 時間の推移とともに、熱の移動によって熱平衡 状態に達することを理解している。 4-(4) 熱量の保存則を表す式を立て、熱容量や比熱を 求めることができる。			
		15週	4. 温度と熱			4-(6) 熱力学第一	4-(5) 気体の内部エネルギーについて理解している。 4-(6) 熱力学第一法則について理解している。 5-(7) ボイル・シャルルの法則について説明できる。			
		16週	前期期末試験 答案返却・解説							
	3rdQ	1週	4. 温度と熱			きることを、具体	4-(7) エネルギーには多くの形態があり互いに変換できることを、具体例を挙げて説明できる。 4-(8) 不可逆変化について理解し、具体例を挙げることができる。			
		2週	4. 温度と熱			4-(9) 熱機関についてきる。	4-(9) 熱機関について理解し、熱効率に関する計算ができる。			
		3週	5. 波の伝わり方			5-(1) 波の波長、「 計算が出来る。	5-(1) 波の波長、周期、振動数、速さについて説明と 計算が出来る。			
		4週	5. 波の伝わり方	- 5. 波の伝わり方			5-(2) 横波と縦波についての計算や作図ができる。			
後期		5週	6. 波の重ね合わせ・干渉と回折			6-(1) 波の重ね合	6-(1) 波の重ね合わせの原理を理解している。 6-(2) 波の独立性を理解している。			
		6週	6. 波の重ね合わせ・干渉と回折				6-(3) 定常波、自由端反射と固定端反射についての計算や作図ができる。			
		7週	6. 波の重ね合わせ・干渉と回折			6-(4) 波面、2つのる。	6-(4) 波面、2つの波の干渉、波の回折の問題が解ける。			
		8週	後期中間試験 答案返却・解説							
		9週	7. 波の反射と屈折・音			問題が解ける。	7-(2) 音波について説明でき、音波の性質に関する問			
		10週	7. 波の反射と屈折・音			7-(3) 音源の振動、 できる。	7-(3) 音源の振動、ドップラー効果についての計算が できる。			
	4thQ	11週	7. 波の反射と屈折・音				7-(4) 弦の長さと、弦を伝わる波の速さから、弦の固 有振動数を求めることができる。			
		12週	7. 波の反射と屈折・音			7-(5) 気柱の長さん数を求めることが	7-(5) 気柱の長さと音速から、開管、閉管の固有振動数を求めることができる(開口端補正は考えない)。			
		13週	7. 波の反射と屈折・音			7-(6) 共振、共鳴できる。	7-(6) 共振、共鳴現象について具体例を挙げることができる。			
		14週	8. 光	8. 光			8-(1) 光の進み方、光の性質についての問題が解ける。			
		15週	8. 光			8-(2) レンズ、光o る。	8-(2) レンズ、光の回折と干渉についての計算ができる。			
		16週	学年末試験 答案返却・解説							
評価割合	•									
		試験	発表	相互評価	態度	ポートフォリオ	その他	合計		
総合評価割合 70		70	10	0	20	0	0	100		
基礎的能力 40		40	5	0	20	0	0	65		
専門的能力 30		30	5	0	0	0	0	35		
分野横断的能力 0		0	0	0	0	0	0	0		