	기비기비미										
科目基础		事門学校	│ 開講年度 令和03年度 (2	2021年/支)	授業科目	熱流体工学					
科目番号	ACIDTK	1953009)	科目区分	専門 / 選抜	- 					
授業形態				単位の種別と単位							
開設学科電子制御工				対象学年	5						
開設期		通年	週時間数		2						
教科書/教	材		れる流体力学ノート、例題でわかる工	業熱力学							
担当教員		雷 康斌									
到達目標		お上び熱力学									
ルーブ		3740 X(V) T	の基礎和職で1万に生解すること								
70)	<i></i>		理想的な到達レベルの目安	標準的な到達レ	 ベルの目安	未到達レベルの目安					
流体力学の基礎的事項の理解			流体力学の基礎的事項を十分に説明できる	流体力学の基礎的事項を説明で る		流体力学の基礎的事項を説明でき ない					
流体力学の現象の理解			流体力学の現象を十分に説明でき る	流体力学の現象を	を説明できる	流体力学の現象を説明できない					
熱力学の基礎的事項の理解			熱力学の基礎的事項を十分に説明 できる	熱力学の基礎的事項を説明できる		熱力学の基礎的事項を説明できない					
	現象の理解		熱力学の現象を十分に説明できる	熱力学の現象を認	説明できる	熱力学の現象を説明できない					
		頁目との関	係								
教育方法	去等	<u></u>	1 # 1 W a # T# # = = T	±>=±>=							
概要			と熱力学の基礎的事項について授業を選挙されていると講義を		た幻ュヘわサテク!						
授業の進	(1)授業は、シラバスの項目に沿った講義および演習問題などを組み合わせて行います。 授業の進め方・方法 (2)授業内容は、流体力学および熱力学に関する基礎的事項について行います。 (3)授業の方法は、板書、説明、質問への回答などを行い、必要に応じて資料を配付します。										
注意点	(1) ノートを整理し、配付した資料はなくさないようにしてください。										
 授業の	 属性・履何	(3) シ 多上の区分		ョ・ジケ盲はこじ	1.日でしてのいて,	\/LCV10					
	ティブラーニ		□ ICT 利用	□ 遠隔授業対応	<u>2</u>	□ 実務経験のある教員による授業					
授業計	———— ————————————————————————————————										
	1	週	授業内容		週ごとの到達目標						
前期		1週	流体の定義と力学的な取り扱いおよび す各種物理量の定義と単位を説明する	流体の性質を現	流体の定義と力学 す各種物理量の定	的な取り扱いおよび流体の性質を現 義と単位を理解し適用できる					
		2週	ニュートンの粘性法則、ニュートン流 ン流体を説明する		ニュートンの粘性法則、ニュートン流体、非ニュートン流体の違いを説明できる						
		3週	絶対圧力およびゲージ圧力を説明する 平面や曲面に作用する全圧力および圧	, :力中心説明する	絶対圧力およびゲージ圧を説明できる 平面や曲面に作用する全圧力および圧力中心を計算で きる						
	1stQ	4週	パスカルの原理、液柱計やマノメータ 測定法を説明する	を用いた圧力の	パスカルの原理を説明でき、液柱計やマノメータを用いて圧力の測定ができる						
		5週	物体に作用する浮力を計算する方法を	説明する	物体に作用する浮力を計算できる						
		6週	定常流と非定常流の違いを説明する 質量保存則と連続の式を説明する		定常流と非定常流の違いを説明できる 質量保存則と連続の式を説明できる						
		7週	連続の式を用いて流速と流量を計算す	る方法を説明す	真重保仔則と連続の式を説明できる 連続の式を用いて流速と流量を計算できる						
			る。								
		8週	オイラーの運動方程式を説明する エネルギー保存則とベルマーイの式を	・説明し、ピトー	オイラーの運動方程式を説明できる エネルギー保存則とベルヌーイの式を説明できる。ピ						
		9週	エネルギー保存則とベルヌーイの式を 管、ベンチュリ管、オリフィスを用い 測定原理を説明する	た流量や流速の		リ管、オリフィスを用いた流量や流					
		10週	運動量の法則を理解し、流体が物体に する方法を説明する	及ぼす力を計算	運動量の法則を理解し、流体が物体に及ぼす力を計算できる。						
	2ndQ	11週	層流と乱流の違いを説明する。レイノ イノルズ数を説明する		層流と乱流の違いを説明できる。レイノルズ数と臨界 レイノルズ数を説明できる						
		12週	円管内層流および円管内乱流の速度分。ハーゼン・ポアズイユの法則、ダルッハの式を用いて管摩擦損失を説明す線図を用いて管摩擦係数を求める	シー・ワイズバ	ダルシー・ワイズバッハの式を用いて管摩擦損失を計算できる。ムーディー線図を用いて管摩擦係数を求めることができる。						
		13週	境界層、剥離、後流など流れの中にお りで生じる現象を説明する	かれた物体の周	境界層、剥離、後流など流れの中におかれた物体の周 りで生じる現象を説明できる						
		14週	流れの中の物体に作用する抗力および 明する	揚力について説	流れの中の物体に作用する抗力および揚力について説 明できる						
		15週	抗力係数を用いて抗力、揚力係数を用 する方法を説明する	いて揚力を計算	抗力係数を用いて抗力、揚力係数を用いて揚力を計算 する方法を説明する						
		16週	前期末試験答案返却・解説		9 つ万法で説明 9 つ 前期末試験の内容を十分に理解する						
後期	3rdQ	1週	熱力学で用いられる各種物理量の定義る。熱力学の第一法則を説明する。閉系について、エネルギー式を用いて、エネルギー式を用いて、エネルギー、エンタルピーを計算する	じた系と開いた 熱、仕事、内部	熱力学で用いられる各種物理量の定義と単位を説明できる。熱力学の第一法則を説明する。閉じた系と開いた系について、エネルギー式を用いて、熱、仕事、内部エネルギー、エンタルピーを計算する方法を説明できる						

担切ら来および開いた系が外界にする仕事量をp-v線図 で説明する で記明する で説明する で記していていていていていていていていていていていていていていていていていていてい										
おいて説明する。定容は熱、低圧比熱、比熱比および気					た系が外界にするの	士事量をp-v線図		いた系が外界にする	る仕事量をp-v線図	
### 25			3週	いて説明する。定容.	比熱、低圧比熱、」	犬態方程式を用 比熱比および気	いて説明する。定額	\$比熱、低圧比熱、	を状態方程式を用 比熱比および気	
5週			4週	を説明する。また、 断熱変化、ポリトロ	等圧変化、等容変位 ープ変化の意味を記	量と温度の関係 化、等温変化、 説明し、状態量	を説明する。また、 断熱変化、ポリトロ	等圧変化、等容変 コープ変化の意味を	変化、等温変化、 を説明し、状態量	
13週			5週	し、熱機関の熱効率	明できる。サイクル および冷凍機・ヒ-	レの意味を説明 - トポンプの成	し、熱機関の熱効率	をおよび冷凍機・l		
お明する お明する を計算できる を計算できる 水の等圧素発過程を説明する。飽和蒸気、湿り蒸気、 過熱素気の状態量を影明する 外の等圧素発過程を説明する 外の等圧素発過程を説明する 外の等圧素発過程を説明する 外の禁圧素発過程を説明する 外の状態量を蒸気表および蒸気線図から読み取ることを説明する 大き 大き 大き 大き 大き 大き 大き 大			6週	できる。また、固体	、液体および理想		できる。また、固体	本、液体および理想	ン、熱効率を計算 思気体におけるエ	
過熱素気の状態量を説明する 過熱素気の状態量を計算できる 素気の状態量を素気表および蒸気線図から読み取ることができる 10週 伝熱の基本形態を理解し、各形態における伝熱機構を 記明できる フーリエの法則および熱伝導率を説明する。平板および多層平板の定常熱伝導について熱流束、温度分布、熱抵抗を討算できる 11週 対流をともなう平板の定常熱伝導について熱流束、温度分布、熱抵抗を説明する 対流をともなう平板の定常熱伝導について、熱流束 温度分布、熱通過率を説明する 元ュートンの冷却法則および熱伝導率を説明する。自 然対流と皆も対流と強制対流、層流と乱流、温度境界層と速度境 界層、局所熱伝達率と平均熱伝達率を説明する。自 探対流と強制対流、層流と乱流、温度境界層と速度境 界層、局所熱伝達率と平均熱伝達率を説明する。自 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱流速とについて、熱流速域解気を説明できる 14週 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 15週 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 二ュートンの分却法則および熱伝達率を説明できる。 2元ートンの分かに連携を変と中均熱伝達率を説明する。 2元ートンの冷却法則および熱伝導率を説明できる。 2元ートンの冷却法則および熱伝導率を説明できる。 2元ートンの冷却対流・層流と乱流、温度境界層と速度境界層 2元ートンの冷却対流・層流と乱流、温度境界を速度境界層 2元ートンの冷却対流・層流と乱流、温度境界を速度境界層 2元ートンの冷却対流・層流と乱流、温度境界率を速度が表する。 2元ートンの冷却対流を説明できる。 2元ートンの冷却対流を説明できる。 2元ートンの冷却対流を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの会に関を記明できる。 2元ートンの会に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの冷に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの体に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの体に関係式を説明できる。 2元ートンの会に関係式を説明できる。 2元ートンの体に関係式を表明では、 2元ートンの表に関係式を表明では、 2元ートンの体に関係式を表明では、 2元ートンの体に関係などのに関係では、 2元ートンの体に関係などのに対し、 2元ートンの体に対し、 2元ートンの体に対し										
10週 とを説明する						気、湿り蒸気、			蒸気、湿り蒸気、	
10週 説明できる 説明する 説明する 説明する 記明する 記明する 11週 フーリエの法則および熱伝導率を説明する。平板および多層平板の定常熱伝導について熱流束、温度分布、熱抵抗を計算できる 対流をともなう平板の定常熱伝導について、熱流束、温度分布、熱通過率を説明する 対流をともなう平板の定常熱伝導について、熱流束、温度分布、熱通過率を説明する コュートンの冷却法則および熱伝導率を説明する。自然対流と強制対流、層流と乱流、温度境界層と速度境界層、高所熱伝達率と平均熱伝達率を説明する コュートンの冷却法則および熱伝導率を説明する。自然対流と強制対流、層流と乱流、温度境界層と速度境界層、高所熱伝達率と平均熱伝達率を説明する 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 本板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 本板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 本板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 本板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 本板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる。 本板に沿う流れ、円で書る。 フランクの法則、ステファンボルツマンの法則、ウィーンの変位則を説明できる。 単色ふく射率および全ふく射率を説明できる。 単色ふく射率および全が関する。 単色ふく射率および全が、カーンの変位則を説明できる。 単色ふく射率および全が、カーンの変位則を説明できる。 単色ふく射率および全が、カーンの変位則を説明できる。 単色ふく射率は、カーンの変位則を対する。 単色、大野ないの表に対し、カーンの変位別を表に対し、カーンの表に対し、表に対し、カーンの表に対し、カーンの表に対し、表に対し、表に対し、表に対し、カーンの表に対し、表に対し、表に対し、表に対し、表に対し、表に対し、表に対し、表に対し、					表および蒸気線図が	から読み取るこ		表および蒸気線図	図から読み取るこ	
11週					解し、各形態におり	ける伝熱機構を		里解し、各形態にな	おける伝熱機構を	
12년 温度分布、熱通過率を説明する 温度分布、熱通過率を説明できる 13週 二ュートンの冷却法則および熱伝導率を説明する。自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明する 元ュートンの冷却法則および熱伝導率を説明する。自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明する 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を説明できる 平板に沿う流れ、円管内の流れ、円管内の流れなどについて、熱伝達関係式を説明できる。プランクの法則、ステファンボルツマンの法則、ウィーンの変位則を説明する。単色、く射率および全ふく射率を説明できる。プランクの法則、フテファンボルツマンの法則、ウィーンの変位則を説明できる。単色ふく射率および全ふく射率を説明できる 単色ふく射率および全ふく射率を説明できる 単色ふく射率がよび全ふく射率を説明できる 単色ふく射率がよび全ふく射率を説明できる 単色ふく射率がよび全ふく射率を説明できる 単色ふく射率がよび全が大りできる 単位の大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大りを対象が大ります。 10			11週	び多層平板の定常熱	び熱伝導率を説明 伝導について熱流5	する。平板およ 束、温度分布、	び多層平板の定常熱	A伝導について熱流	明する。平板およ 流束、温度分布、	
13週	4+1	ul- O				ハて、熱流束、			ついて、熱流束、	
In the image of the image o	4tr	`	13调 :	然対流と強制対流、	層流と乱流、温度は	竟界層と速度境	然対流と強制対流、	層流と乱流、温風	∮境界層と速度境 │	
15週										
評価割合 定期試験 小テスト レポート 発表 ポートフォリオ その他 合計 総合評価割合 60 10 10 0 10 10 100 基礎的能力 25 0 5 0 5 40 専門的能力 25 10 5 0 5 0 45			15週 /	ルツマンの法則、ウィーンの変位則を説明する。単色			ンボルツマンの法則、ウィーンの変位則を説明できる			
定期試験 小テスト レポート 発表 ポートフォリオ その他 合計 総合評価割合 60 10 10 0 10 10 100 基礎的能力 25 0 5 0 5 5 40 専門的能力 25 10 5 0 5 0 45			16週	学年末試験答案返却・解説			学年末試験の内容を十分に理解する			
総合評価割合 60 10 10 0 10 10 100 基礎的能力 25 0 5 0 5 5 40 専門的能力 25 10 5 0 5 0 45	評価割合							T		
基礎的能力 25 0 5 0 5 5 40 専門的能力 25 10 5 0 5 0 45			試験							
専門的能力 25 10 5 0 5 0 45				_	-	_				
									1.4	
分野横断的能力 10										
	[分野横断的能力	カ 10		0	0	[0	[0	5	15	