呉工業高等専門学校		開講年度	令和02年度 (2	020年度)	授業科目	電気回路		
科目基礎情報								
科目番号	0225			科目区分 専門/選		択必修		
授業形態	講義			単位の種別と単位数	数 履修単位	履修単位: 2		
開設学科	電気情報工学科			対象学年	3	₁ 3		
開設期	通年			週時間数	2	2		
教科書/教材	西巻正郎, 「電気回路の基礎」(森北出版)及び講義ノート、プリントを基本とする。							
担当教員	江口 正徳							
지수 다 표								

<u>|到達目標|</u>

- 1. 回路の共振現象を理解し、問題が解けること 2. ベクトル軌跡について理解し、問題が解けること 3. ひずみ波交流について理解し、問題が解けること 4. 三相交流・多相交流について理解し、問題が解けること 5. 基本的な過渡現象について理解し、問題が解けること

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安			
評価項目1	交流回路網の応用的な計算ができ る	交流回路網の計算ができる	交流回路網の計算ができない			
評価項目2	ひずみ波交流の応用的な計算がで きる	ひずみ波交流の計算ができる	ひずみ波交流の計算ができない			
評価項目3	多相交流の応用的な計算ができる	多相交流の計算ができる	多相交流の計算ができない			

学科の到達目標項目との関係

学習・教育到達度目標 本科の学習・教育目標 (HC)

モデルコアカリキュラムの学習内容と到達目標

教育方法等

概要	電気回路の基礎を学習した学生に対して、共振現象、ベクトル軌跡、ひずみ波、多相交流、過渡現象等について理解を 深めるとともに、応用力を養うことを目的とする。本授業は進学と就職に関連する。
授業の進め方・方法	講義を基本とし、課題のレポートを適宜課す。 理解できない場合は、放課後理解できるまで補習を課す。
注意点	各種資格試験(電気主任技術者、陸上無線技士など) につながる授業なので,十分勉強すること。 新型コロナウイルスの影響により,授業内容を一部変更する可能性があります。

授業計画

		週	授業内容	週ごとの到達目標			
		1週	第一章 共振回路	直列・並列共振回路の計算かできる			
		2週	第一章 共振回路	共振回路のQファクタの意義を説明できる			
		3週	第一章 共振回路	フォスタのリアクタンス定理を用いた解析ができる			
	1stQ	4週	第一章 共振回路	演習解答を作成できる			
	ISIQ	5週	第二章 対称三相回路	多相回路の特徴説明ができる			
		6週	第二章 対称三相回路	対称三相回路のY-Δ変換を計算できる			
		7週	中間試験				
前期		8週	第二章 対称三相回路	対称三相回路のY-Δ変換ができる			
日山光灯		9週	第二章 対称三相回路	対称三相接続回路の説明ができる			
		10週	第二章 対称三相回路	対称三相接続回路の計算ができる			
		11週	第二章 対称三相回路	対称三相回路の電力の計算ができる			
	2ndQ	12週	第二章 対称三相回路	演習解答を作成できる			
	ZiluQ	13週	第三章 非正弦波交流	非正弦波交流の概要説明ができる			
		14週	第三章 非正弦波交流	フーリエ解析の概要が説明できる			
		15週	答案返却・解答説明	フーリ工解析の計算ができる			
		16週	第三章 非正弦波交流	代表的なひずみ波形の解析法を説明できる			
		1週	第三章 非正弦波交流	代表的なひずみ波形の計算ができる			
		2週	第三章 非正弦波交流	非正弦波交流回路の解析ができる			
		3週	第三章 非正弦波交流	演習解答を作成できる			
	3rdO	4週	第四章 ベクトル軌跡	交流回路のベクトル軌跡の意義を説明できる			
	SiuQ	5週	第四章 ベクトル軌跡	複素関数による等角写像の原理を説明できる			
		6週	第四章 ベクトル軌跡	一次関数による写像の計算ができる			
		7週	中間試験				
後期		8週	第四章 ベクトル軌跡	電気回路における写像を解析・応用できる			
1270	4thQ	9週	第四章 ベクトル軌跡	演習解答の作成ができる			
		10週	第五章 過渡現象の基礎	回路素子の性質を説明できる			
		11週	第五章 過渡現象の基礎	R-C、R-L直列回路の過渡現象の解析ができる			
		12週	第五章 過渡現象の基礎	過渡現象時のエネルギーの移動を解析できる			
		13週	第五章 過渡現象の基礎	複エネルギー直列回路の過渡現象を説明できる			
		14週	第五章 過渡現象の基礎	演習解答が作成できる			
		15週	答案返却・解答説明				
		16週					

分類		分野	学習内容	学習内容の到達目標			到達レベル	授業週	
				電荷と電流、電圧を説明できる。			4		
				オームの法則を説明し、電流・電圧・抵抗の計算ができる。			4		
				キルヒホッフの法則を用いて、直流回路の計算ができる。				4	
				合成抵抗や分圧・分流の考え方を用いて、直流回路の計算ができ る。				4	
				ブリッジ回路を計算	草し、平衡条件を求	えめられる。		4	
				正弦波交流の特徴を	ご説明し、周波数や	o位相などを計算で	:きる。 -	4	
				平均値と実効値を説明し、これらを計算できる。			4		
				正弦波交流のフェーザ表示を説明できる。				4	
				R、L、C素子における正弦波電圧と電流の関係を説明できる。				4	
			電気回路	瞬時値を用いて、交流回路の計算ができる。				4	
				フェーザ表示を用いて、交流回路の計算ができる。				4	
				インピーダンスとアドミタンスを説明し、これらを計算できる。				4	
専門的能力	分野別の専 門工学	電気・電子系分野		キルヒホッフの法則を用いて、交流回路の計算ができる。				4	
	177			合成インピーダンスや分圧・分流の考え方を用いて、交流回路の 計算ができる。				4	
				直列共振回路と並列共振回路の計算ができる。				4	
				相互誘導を説明し、相互誘導回路の計算ができる。				4	
				理想変成器を説明できる。				4	
				交流電力と力率を説明し、これらを計算できる。				4	
				RL直列回路やRC直列回路等の単エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。				4	
				RLC直列回路等の複エネルギー回路の直流応答を計算し、過渡応答の特徴を説明できる。					
			電力	三相交流における電圧・電流(相電圧、線間電圧、線電流)を説明できる。			4		
				電源および負荷のΔ-Y、Y-Δ変換ができる。				4	
				対称三相回路の電圧・電流・電力の計算ができる。			4		
評価割合									
試験		务	 後表	相互評価	態度	ポートフォリオ	その他	合語	†
総合評価割合 70		0		0	0	30	0	100)
基礎的能力 30		0		0	0	10	0	40	
専門的能力 30		0		0	0	10	0	40	
分野横断的能力 10		0		0	0	10	0	20	