吳工業高等専門学校				開講年度	F度 平成28年度 (2016年度)		授	業科目	高度専門 体工学)	特別講義:	I (数値流
科目基礎	性情報						•				
科目番号	<u> </u>	0022				科目区分	専門 / 必修				
授業形態		講義				単位の種別と単位					
開設学科						対象学年	事1				
開設期				<u> </u>		週時間数	2				
<u>教科書/教</u>	**************************************	はプリン	ノト配布	•		ALE: 3 123X					
担当教員	. [17]	野村高原									
到達目標	<u> </u>	±3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
1. 熱流体 2. 運動方 3. 数値計	- 現象に対す 程式の無次 算の結果か	る運動方程 元化および ら,流れ場	式,境 差分法(, 温度 ⁾	界条件, 無次により, 流れ 場などを図示	元数の意味が説明 場などの数値計算 し,現象を説明す	できること ができること ることができること					
ルーブリ	ノツク		1			T			1		
				思的な到達レ/					到達レベルの目安		
評価項目1				流体現象に対 境界条件,無次 こ説明できる。	, 境界条件, 無次元数の意味が説 ,			,境界条	熱流体現象に対する運動方程式 , 境界条件, 無次元数の意味が説 明できない		
評価項目2				か方程式の無ど こより, 流れり 適切にできる。	運動方程式の無次元化および差分 運動方法により、流れ場などの数値計算 法によ			運動方程 法により ができな	式の無次元化 , 流れ場などい	および差分 の数値計算	
評価項目3				数値計算の結果から,流れ場,温 度場などを図示し,現象を的確に 説明することができること				数値計算度場など	数値計算の結果から,流れ場,温度場などを図示し,現象を説明することができない		
 学科の至	達日標I	頁目との関			-					· · · · · · · · · · · · · · · · · · ·	
<u> </u>		KII C VIII	31/10								
教育方法	•										
概要	∆ √∫	熱を伴う・温度場	う流動現 湯・流線	象に対して, の表示方法ま	支配方程式の導出 での一連の熱流体	方法,支配方程式の 数値計算の基本作	の無次業の修行	元化方法, 得を目的と	差分法によ する. 就職	る数値計算方 や進学に関わ	法,速度場 る科目であ
 授業の進&	め方・方法	講義およ	 いて ラ て 学習		ら、各テーマごとの る、	演習による課題を誇	課すと	ともにレポ	ートを義務	付け,提出物	の評価の内
注意点		ーまうこと	≤が多い	ので,粘り強	食く慎重に取り組ん	用して各自計算するで欲しい、数値計算を残すことの無い。	算法の	基礎を修得	!すれば,熱	があると解は 流体に関わら	発散してし ず,様々な
	 6	1137 ± 703	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CC 0 -> C/	1,570 5,000 225		31210	IX D'ILITO C	1/(00)		
	<u>-</u>	週	授業内]			调ブレ	の到達目標	<u> </u>		
		1週	数値熱流体力学の概要説明				熱流体現象に対する運動方程式,境界条件,無次元 の意味が説明できること				
		2週	表計算による数値計算法				運動方程式の無次元化および差分法により,流れどの数値計算ができること				
後期		3週	+		ポテンシャル流れ		数値計算の結果から、流れ場、温度場などを図え 、現象を説明することができること 数値計算の結果から、流れ場、温度場かどを図っ				
	3rdQ	4週			影響,障害物の影響 		数値計算の結果から、流れ場、温度場などを図 、現象を説明することができること 数値計算の結果から、流れ場、温度場などを図 、現象を説明することができること				
		5週)考察とまとめ 			数値計算の結果から,流れ場,温度場などを図				
		7週	中間試	 ば験		,現象	を説明する	ることができ	<u> </u>		
		8週	答案返却・解答説明 障害物, Reの影響				数値計算の結果から,流れ場,温度場などを図え ,現象を説明することができること				 ごを図示し
		9週	結果の	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		数値計算の結果から、流れ場、温度場などを図示し、 現を説明することができること					
		10週	ベナー	- ル対流, カル		大塚でもいりすることができること 数値計算の結果から,流れ場,温度場などを図示 ,現象を説明することができること			どを図示し		
	4thQ	11週	Re, R	Ra, アスペク							
		12週	結果の	考察とまとぬ		数値計算の結果から、流れ場、温度場などを図示し、現象を説明することができること					
		13週	長方形	(管内等の自然		数値計算の結果から,流れ場,温度場などを図示し ,現象を説明することができること					
		14週	Re, Ra, Pr, アスペクト比の影響				数値計算の結果から,流れ場,温度場などを図示し ,現象を説明することができること				
		15週	期末試験								
		16週	答案返却・解答説明		月						
モデル]アカリ:	ー <u>ーー</u> Fユラムσ)学習(内容と到達	 目標						
<u> </u>	_, ,,,,	分野		3日 C 1912年 ロ 157 学習内容 学習内容の到達目標				到達レベル	授業调		
, J / J					部内谷 子首内谷の到達日標 層流と乱流の違いを説明できる。				3		
専門的能力	カー 分野別の門工学	の専 機械系	系分野 │ ・	熱流体					能に適田で		1
	川工士				きる。	,, - 1 - / - / × C-	,,,+ 0 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.5.,-,-,-,1,1 €	3	

円管内層流および円管内乱流の速度分布を説明できる。 3 バーゲン・ポアズイユの法則を説明できる。 3 ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 3 ムーディー線図を用いて管摩擦係数を求めることができる。 3 伝熱の基本形態を理解し、各形態における伝熱機構を説明できる。 3 フーリエの法則および熱伝導率を説明できる。 3 財流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通過率を計算できる。 3 コニュトンの冷却法則および熱伝達率を説明できる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱流を達関係式を用いることができる。 3 評価割合 1 総合評価割合 70 30 0 </th <th></th> <th colspan="2"></th> <th></th> <th colspan="4"></th> <th></th>										
ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。 3 ムーディー線図を用いて管摩擦係数を求めることができる。 3 伝熱の基本形態を理解し、各形態における伝熱機構を説明できる。 3 フーリエの法則および熱伝導率を説明できる。 3 平板および多層平板の定常熱伝導について、熱流束、温度分布、熱通過率を計算できる。 3 ガ流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通過率を計算できる。 3 ニュートンの冷却法則および熱伝達率を説明できる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を用いることができる。 3 評価割合 試験 演習レポート 相互評価 態度 ポートフォリオ その他 合計総合評価割合 70 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					円管内層流およびP	円管内乱流の速度分	かかい かんしゅう かんしゅ かんしゅ はない		3	
ムーディー線図を用いて管摩擦係数を求めることができる。 3 伝熱の基本形態を理解し、各形態における伝熱機構を説明できる。 3 フーリエの法則および熱伝導率を説明できる。 3 平板および多層平板の定常熱伝導について、熱流束、温度分布、熱抵抗を計算できる。 対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通過率を計算できる。 3 コートンの冷却法則および熱伝達率を説明できる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱流・環境、関係式を開いることができる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、 3 自然対流と強制が表します。 3 自然対流と強制を対象を表します。 3 自然対流と対象を表します。 4 自然対象を表します。 4 自然的に対象を表します。 4 自然的能力 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					ハーゲン・ポアズイ	イユの法則を説明て	ごきる 。		3	
伝熱の基本形態を理解し、各形態における伝熱機構を説明できる。 3 2 2 2 2 2 3 3 3 3					ダルシー・ワイスバッハの式を用いて管摩擦損失を計算できる。					
プーリエの法則および熱伝導率を説明できる。 3 フーリエの法則および熱伝導率を説明できる。 平板および多層平板の定常熱伝導について、熱流束、温度分布、熱通 対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通 3 対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通 3 3 3 3 3 3 3 3 3		ムーディー線図を用いて管摩擦係数を求めることができる。				る。	3			
平板および多層平板の定常熱伝導について、熱流束、温度分布、 熱抵抗を計算できる。 対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通 過率を計算できる。 ニュートンの冷却法則および熱伝達率を説明できる。 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局 所熱伝達率と平均熱伝達率を説明できる。 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて 、熱伝達関係式を用いることができる。 評価割合 試験 演習レポート 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 30 0 0 0 0 0 100 基礎的能力 0 0 0 0 0					伝熱の基本形態を理解し、各形態における伝熱機構を説明できる。				3	
熱抵抗を計算できる。3対流を伴う平板の定常熱伝導について、熱流束、温度分布、熱通 過率を計算できる。3ニュートンの冷却法則および熱伝達率を説明できる。3自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局 所熱伝達率と平均熱伝達率を説明できる。3平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて 、熱伝達関係式を用いることができる。3評価割合試験 総合評価割合演習レポート 30相互評価 0態度 0ポートフォリオ 0その他 0合計 100基礎的能力00000基礎的能力00000		フーリエの法則および熱伝導率を説明できる。				3				
過率を計算できる。 3 ニュートンの冷却法則および熱伝達率を説明できる。 3 自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を用いることができる。 3 評価割合 試験 演習レポート 相互評価 態度 ポートフォリオ その他 合計総合評価割合 70 30 0 0 0 0 0 100 基礎的能力 0 0 0 0 0 0 0 0 0 0 0 0 0							3			
自然対流と強制対流、層流と乱流、温度境界層と速度境界層、局所熱伝達率と平均熱伝達率を説明できる。 3 平板に沿う流れ、円管内の流れ、円管群周りの流れなどについて、熱伝達関係式を用いることができる。 3 評価割合 減験 演習レポート 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						布、熱通	3			
所熱伝達率と平均熱伝達率を説明できる。 する。										