	 Г業喜等	 専門学校	5 1	 開講年度	平成31年度(2	 2019年度)	授	 業科目	コンピュ	 ータ構成学	<u> </u>
		אי דנו נג	.	刑冊十/文		2017年度)	12:	*17口		ノヤサルなコ	
17 <u>12 坐 嵷</u> 科目番号	IH+K	0035				科目区分		専門 / 選	======================================		
<u> </u>		講義				単位の種別と単	位数	学修単位			
1設学科			子工学専	 Τ. Ό				事2			
設期		前期	, , 、,,	~		週時間数	2				
教科書 /教士 参考書:橋本				T = 11 1 1			Money Harris, Sarah L. Harris, 「Digital Design and ann				
旦当教員		柳澤 秀	明								
到達目標											
ごき、実行	制御部と演	5式と設計 東算処理部で	支術につ を設計で	いて学び、ō きることをE	さらに、高性能なコ 目標とする。	ンピュータシステ	んについ	ハて理解す	する。モデル	C P Uの設計	手法が理解
レーブリ	ック					1					
			_	別な到達レ				·ベルの目安			
			クチ	νピュータシ ∸ャについて ヒ評価をする	コンピュータシステムのアーキテ コンピュ クチャについて説明することがで クチャに きる。 きない。				ータシステム ついて説明す	のアーキラることがで	
学科の到	達目標項	目との関							i		
教育方法											
既要 受業の進め	 方・方法	本科できたのの構成を対象の構成を対象の構成を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を	学んだコ: C解説し、 戏技術と は、座学(ンピュータフ 、ハードウコ 動作原理につ	- ドウェア構造と動 アーキテクチャをベ c ア記述言語(VH Dいても学習する。 を交えながら、コン る。	ースに、コンピュ D L)による設計					
主意点		本科:二	コンピュ· : 論理設	ータアーキラ 計(1年)	- ウチャ (4年) - 期末試験の成績+	課題加点(最大1	0点)				
受業計画		JAXII II	4 (42)	1 0 0 /////	7737 1424/3/(-275/4/3/(-	DIVERSION (AXX)	<u> </u>				
		週	授業内	容			调ごと	の到達目	·····································		
			ガイダ				2 進数による数値の表現、算術演算、シフト演算				 7ト演算を <i>l</i>
	1stQ	1週	組み合	わせ回路にて	ついての復習		ードウェア記述言語(VHDL)で実現する。 				
		2週	順序回路についての復習				カウンタなどをハードウェア記述言語(VHDL)で 現する。				HDL) で美
		3週	制御回	路についての	の復習		制御回路をハードウェア記述言語(VHDL)で実現する。				
		4週	演算ユ	ニットの構成	成法		演算ユニットの構成について理解する。また、 VHDL記述で設計し、動作を検証する。				
		5週	+	装置(1)			入出力装置の動作について理解する。				
		6週	入出力	装置(2)			入出力装置の動作について理解する。				
		7週	CPUの	構成と命令	セットの仕様		CPUの構成を理解すると共に、命令の種類、命令語の構成とその動作を理解する。				
前期		8週	命令語とアドレス指定形式				命令語とアドレス指定形式ついて具体例を挙げながり解説する。				
	2ndQ	9週	データ	パスと実行		モデルCPUの命令実行に基づいてデータパスと実制御部の構成を学ぶ。					
		10週	実行制御部の設計		美行制値 マイクE する。		川御の状態遷移図からワイアードロジック制御 7ロプログラム制御による実行制御について理!				
		11週	実行制御部の記述語		设計		ワイアードロジック制御による実行制御部について VHDL記述で設計する手法を学ぶ。				
		12週	パイプ	ライン実行	CPUを高速化する手法 別御 成方法を解説し、パイプラー について解析する。		・パイプライ	であるパイプライン制御の村 ライン制御による性能の向_			
		13週	パイプ				構造ハザード、制御ハザード、データハザードについて、問題と対策を解説する。				
		14週	メモリ	EU			キャッシュと仮想記憶について理解する。				
		15週	期末計				コンピュータハードウェアの構造と設計技術について				
			1				理解できているかを確認する出題である。 試験の解答と解説を行う。				
		16週 -	まとめ		= 1		試験の	解合と解	況を行う。		
	<u> </u>			内容と到達		i ne				711) ± 1 · · · ·	122111
分類		分野		学習内容	学習内容の到達目			∀ レ! → →	田士ファー	到達レベル	授業週
専門的能力					論理ゲートを用いて論理式を組合せ論理回路として表現すること ができる。				5	前1	
					与えられた組合せ論理回路の機能を説明することができる。		5	前1			
	♥ BAU1 ~	<u>_</u>		引 計算機工学	組合せ論理回路を設計することができる。				5	前1	
	分野別の 門工学	り 情報系	系分野		フリップフロップなどの順序回路の基本素子について、その動作 と特性を説明することができる。				5	前2	
					レジスタやカウンタなどの基本的な順序回路の動作について説明			5	前2		
					できる。						
	1				与えられた順序回路の機能を説明することができる。				5	前2	

			J	順序回路を設計する	ることができる。			5	前2			
				コンピュータを構成 - タの流れを説明で	成する基本的な要素 できる。	長の役割とこれらの	間でのデ	5	前7			
				プロセッサを実現す 、	するために考案され	に主要な技術を説	朗できる	5	前7			
				メモリシステムを§ きる。	実現するために考案	された主要な技術	を説明で	5	前14			
	入出力を実現するために考案された主要な技術を説明できる。						5	前5,前6				
	コンピュータアーキテクチャにおけるトレードオフについて説明 できる。						いて説明	5	前7,前14			
				ハードウェア記述詞 段計、検証を行うる	言語など標準的な手 ことができる。	芸を用いてハード	ウェアの	5	前1,前2,前 3,前4,前 5,前6,前 9,前11			
	要求仕様に従って、標準的なプログラマブルデバイスやマイコンを用いたシステムを構成することができる。						5	前1,前2,前 3,前4,前 5,前6,前 9,前11				
評価割合												
	試験		果題	相互評価	態度	ポートフォリオ	その他	4	計			
総合評価割合	合評価割合 100		.0	0	0	0	0	1	10			
基礎的能力	30		.0	0	0	0	0	4	.0			
専門的能力	70)	0	0	0	0	7	0			
分野横断的能力 0		()	0	0	0	0	0	1			