		専門学校	開講年度	平成29年度 (2	2017年度)	担	業科目	電気機	 哭応田	
科目基礎		、」 」	、	i /ススムとタキー/又(ム	-01/十/又)	ענ ן	<u>*110</u>	电火灯戏	ロロバン	
	ど目牧	0021			NEED		市田 八部	+==		
		0021		科目区分	N//L 20/	専門/選択				
		講義	Maria .	単位の種別と	甲位数	学修単位: 1				
		電気工学	学科	対象学年	5					
		後期		週時間数	1					
教科書/教	材	インバ-	-タ 制御技術と実践	、西田克美、科学	情報出版					
担当教員		西田 克	美							
到達目標	<u>=</u>									
①単相イ`	ンバータの碁	基本回路が排 2間ベクトル アの制御方法	苗ける。 レ変調が説明できる。 よが理解できる。							
ルーブリ										
<i>,,</i> , ,	,,,					是低限の)到達レベノ	しの日安		
		理想	想的な到達レベルの目	安 標準的な到達	レベルの目安	(可)	対達レ′ ∨	かり日女	未到達レベル	の目安
評価項目1		流	生ダイオードが帰還や ダイオードとして機能 いることが理解できる	トードとして機能し 写写返二声収.		出力電圧とIGBTのゲート信号の関係が理解できる。		ゲート信 きる。	出力電圧とIGBTのゲート信号の関係が理解できない。	
評価項目2			特空間ベクトルの基本トルへの分解ができる PWMの特長が理解で	。 瞬時空間ベク	'トルの基本べ 解ができる。	ゼロベクトルが理解できる。		ゼロベクトルが理解できない。		
評価項目3		ĻC	-フィルタの優位性が理 インバータ出力 電圧の瞬時空間 が描ける。		力電圧と系統 間ベクトル図	インバータ出力電圧と系統 電圧の位相差が注入電力を 決定することが理解できる		(電力を	注入電力の制化できない	卸方法が理解
 学科の至]達目標項	 目との	具係			19			<u> </u>	
JABEE (c) 教育目標)									
教育日標 教育方法										
概要	∆ √	パワーコからなる	ニレクトロニクスは、, る。本講義ではインバ	パワー半導体デバータの基本である!	イスの要素技術 単相並びに3相	を核とし PWMイン	、インバー バータを学	·夕に代表 習し、さ	される製品やそ らに適用例とし	その適用技術 して系統連系
セザクル し	<u> </u>		-タについても述べる。 							
技業の進め	カ方・方法	19177777			シマ 33 へ かり t-	+======================================	レナンフ のっ	54年3374 24	/古一・十 フ	
				-	。演習の一部は					雷磁気学
		パワーコ	講義を説明と演習とを ロンクトロニクスは融 各、電気機器等の科目:	合技術であるので、	、5年間の電気					。電磁気学、
	国	パワーコ	Eレクトロニクスは融 [*]	合技術であるので、	、5年間の電気					。電磁気学、
	耳	パワーコ	Eレクトロニクスは融 [*]	合技術であるので、	、5年間の電気	工学学習の		にぴったり		。電磁気学、
	<u> </u>	パワーコ電子回路	Eレクトロニクスは融格、電気機器等の科目	合技術であるので、	、5年間の電気	工学学習 <i>の</i> 週ごと パワー	D復習整理(の到達目標	にぴった! !		
	<u> </u>	パワーコ 電子回路 週 1週	エレクトロニクスは融格、電気機器等の科目 授業内容 単相インバータ	合技術であるので を復習しながら学	、5年間の電気	工学学習 <i>の</i> 週ごと パワー 法を理	D復習整理 の到達目様 ・半導体デ <i>川</i> と解する。	にぴった! 票 (イスを、)の教科である スイッチとし ⁻	て使用する方
	<u> </u>	パワーコ 電子回路 週 1週 2週	エレクトロニクスは融格、電気機器等の科目: 授業内容 単相インバータ 単相インバータ応用	合技術であるので を復習しながら学	、5年間の電気	工学学習 <i>0</i> 週ごと パワー 法を理 正弦波	D復習整理 の到達目様 半導体デル 解する。 電圧出力の	にぴった! 票 「イスを、 D方法とM)の教科である スイッチとし ⁻ 界について理	で使用する方解する。
	Đị	パワーコ 電子回路 週 1週 2週 3週	Eレクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ	合技術であるので を復習しながら学	、5年間の電気	工学学習 <i>6</i> 週ごと パワー 法を理 正弦波 瞬時空	の到達目様 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	にぴった! !! !! !! !! !! !! !! !! !! !! !! !! !)の教科である スイッチとし ⁻	て使用する方 解する。 C理解する
	3rdQ	プワーコ 電子回路 1週 2週 3週 4週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長	合技術であるので を復習しながら学 の で で で で で で で で で で で で で で で で で で	、5年間の電気	工学学習 <i>6</i> 週ごと パラー 法を強 正弦波 瞬時空	の到達目様 半導体デル 解する。 電圧出力の 間ベクトル 間ベクトル	にぴった! デ (イスを、 D方法とM レと基本へ しから3相)の教科である スイッチとし ⁻ 現界について理 (ストルについ ⁻ 量への逆変換か	て使用する方 解する。 C理解する 「できる
		パワーコ 電子回路 週 1週 2週 3週	Eレクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ	合技術であるので を復習しながら学 の で で で で で で で で で で で で で で で で で で	、5年間の電気	工学学習6 週ごと パまを設 頭でワーフ・ 正弦波 瞬時空 毎日P	の到達目様 半導体デル 解する。 電圧出力の 間ベクトル 間ベクトル	票 (イスを、 D方法と呼 レと基本へ レから3相 ータの出)	の教科である スイッチとし [*] 現界について理能 スクトルについ [*] 量への逆変換か 力電圧位相を系	て使用する方 解する。 C理解する 「できる
		プワーコ 電子回路 1週 2週 3週 4週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長	合技術であるので を復習しながら学 の で で で で で で で で で で で で で で で で で で	、5年間の電気	工学学習 <i>の</i> 週ごと パまで 正 で 時空 時空 世 は の の は に の の の の の の の の の の の の の の の	の到達目様 半導体デル 解する。 電圧出力の 間ベクトル 間ベクトル WMインバ	にぴった! (イスを、 D方法と限 レと基本へ レから3相 ータの出; 明流が出来	の教科である スイッチとし [*] 現界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系	て使用する方 解する。 C理解する 「できる
		プワーコ電子回路 週 1週 2週 3週 4週 5週 6週	Eレクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習 <i>6</i> 週ごフラ パ法で 瞬時相め 時中相める 理解かる	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトル WMインバッことで逆流	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画		プワーコ 電子回路 1週 2週 3週 4週 5週	Eレクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習 <i>6</i> 週ごフラ パ法で 瞬時相め 時中相める 理解かる	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトル WMインバッことで逆流	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 現界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系	て使用する方 解する。 C理解する できる 統のそれより
授業計画		プワーコ電子回路 週 1週 2週 3週 4週 5週 6週	Eレクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画		プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画		プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画		プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画	3rdQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画		プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画	3rdQ	プローコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画	3rdQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画	3rdQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週	レクトロニクスは融 各、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習	合技術であるので を復習しながら学 フ	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画	3rdQ 4thQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	アクトロニクスは融格、電気機器等の科目 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習 インバータの主要部 期末考査	合技術であるのでを復習しながら学	、5年間の電気	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 C理解する できる 統のそれより
授業計画	3rdQ 4thQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	アクトロニクスは融格、電気機器等の科目語を関係を関係を関係を対して、 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習 インバータの主要部 期末考査	合技術であるのでを復習しながら学	、5年間の電気, 習してほしい。	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	スイッチとして理解について理解について理解について理解について理解を必要を使われたのが変換がいる。 ないでは、クトルについて最小の逆変換が、力電圧位相を系統をする。 ないできない。 ないできないできない。 ないできないできない。 ないできないできないできないできないできないできないできないできないできないでき	て使用する方 解する。 て理解する いできる 統のそれより
を期 そデルニ 分類	3rdQ 4thQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	アクトロニクスは融格、電気機器等の科目語を関係を関係を関係を対して、 授業内容 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習 インバータの主要部 期末考査	合技術であるのでを復習しながら学	、5年間の電気, 習してほしい。	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	の教科である スイッチとし [*] 界について理 ベクトルについ [*] 量への逆変換か 力電圧位相を系 る。 なまする	て使用する方 解する。 て理解する いできる 統のそれより
授業計画を対しています。	3rdQ 4thQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	アクトロニクスは融格、電気機器等の科目語を関係を関係を関係を対して、 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習 インバータの主要部 期末考査	合技術であるのでを復習しながら学	、5年間の電気, 習してほしい。	工学学習の 週パまで 一 で で で で で で で で い で で い で で い で い で	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	にぴった! 「イスを、 D方法と匹 レと基本へ レから3相 ータの出; 明流が出来 場所の確認	スイッチとして理解について理解について理解について理解について理解を必要を使われたのが変換がいる。 ないでは、クトルについて最小の逆変換が、力電圧位相を系統をする。 ないできない。 ないできないできない。 ないできないできない。 ないできないできないできないできないできないできないできないできないできないでき	て使用する方 解する。 て理解する いできる 統のそれより
授業計画を対しています。	3rdQ 4thQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 75週 759	アクトロニクスは融格、電気機器等の科目語を関係を関係を関係を対して、 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習 インバータの主要部 期末考査	合技術であるのでを復習しながら学	、5年間の電気, 習してほしい。	工学学習6 別法 正瞬時 四 三 進 田 明 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	の到達目様 半導体デル解する。 電圧出力の間ベクトル間ベクトルので送り でとで逆れている。	票 「イスを、 D方法と呼 レと写の出; 明流が出来 別所の確認 T, 平滑キ	スイッチとして理解をついて理解をついて理解をついて理解をついて理解をついて理解をついて理解をついて理解をついて理解をついてである。 またする またする またする またする またする またする またす かいしょう アイン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシタ、イン・アパシャン・アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・	で使用する方解する。できる 然のそれより シダクタフィ
授業計画を対しています。	3rdQ 4thQ	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	アクトロニクスは融格、電気機器等の科目: 授業内容 単相インバータ 単相インバータ応用 三相PWMインバータ SVPWMの特長 系統連系インバータ 演習 インバータの主要部 期末考査 アジョ内容と到達	合技術であるのでを復習しながら学	、5年間の電気、習してほしい。	工学学習6 別法 正瞬時 四 三 進 田 明 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	の到達目様 半導体デル 開催に出力の 間ベクトル WMインバッ WMインバッ MOS-FE	票 「イスを、 D方法と呼 レと写の出; 明流が出来 別所の確認 T, 平滑キ	スイッチとして理解をついて理解をついて理解をついて理解をしていて理解を対象をする。 まままままままままままままままままままままままままままままままままままま	で使用する方 解する。 で理解する できる 統のそれより ンダクタフィ
授業計画を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を	3rdQ 4thQ コアカリキ 計画合 10	プラーコ 一型子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 一分野 検	アクトロニクスは融格、電気機器等の科目:	合技術であるのでを復習しながら学	、5年間の電気 習してほしい。 票 態度 0	工学 週パ法正 瞬時 目が 1ル ポー 0	の到達目様 半導体デル 開催に出力の 間ベクトル WMインバッ WMインバッ MOS-FE	にぴった! ディスを、 D方法基本ペレから3相 ータの出来 場所ので滑キ での他 0	スイッチとして理解について理解について理解について理解を表する。 ままする まっぱシタ・イン 到達レベル 自動達レベル 自動達している 自動 自動を はいます かい	で使用する方 解する。 で理解する できる 統のそれより ンダクタフィ 授業週
授業計画を対している。そのでは、おります。このでは、おります。このでは、おります。このでは、おります。このでは、おります。このでは、おります。このでは、このでは、このでは、このでは、このでは、このでは、このでは、このでは、	3rdQ 4thQ コアカリキ 高 調合 10 カ 30	プラーコ 電子回路 1週 2週 3週 4週 5週 6週 7週 8週 9週 10週 11週 113週 14週 15週 16週 一一 一一 一一 一一 一一 一一 一一 一一 一一 一一 一一 一一 一一	アクトロニクスは融格、電気機器等の科目:	合技術であるのでを復習しながら学	、5年間の電気、 習してほしい。 票 態度 0 0	工学学 週 パ と	の到達目様 半導体デル 開催に出力の 間ベクトル WMインバッ WMインバッ MOS-FE	にぴった! ディスを、 D方法基本へ レから3相 ータの出来 弱所ので 開流が確認 T, 平滑キ ・	スイッチとして理解について理解について理解について理解を必要をする。 おきする マイッチと のがな かい	で使用する方 解する。 で理解する できる 統のそれより ンダクタフィ 授業週
授業計画を対象を表現しています。	3rdQ 4thQ 1ファカリキ 1 30 カ 30 カ 40	プラーコ 電子回路 3週 4週 5週 6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	アクトロニクスは融格、電気機器等の科目:	合技術であるのでを復習しながら学	、5年間の電気 習してほしい。 票 態度 0	工学 週パ法正 瞬時 目が 1ル ポー 0	の到達目様 半導体デル 開催に出力の 間ベクトル WMインバッ WMインバッ MOS-FE	にぴった! ディスを、 D方法基本ペレから3相 ータの出来 場所ので滑キ での他 0	スイッチとして理解について理解について理解について理解を表する。 ままする まっぱシタ・イン 到達レベル 自動達レベル 自動達している 自動 自動を はいます かい	て使用する方解する。 て理解する できる 統のそれより