宇部丁業	高等	専門学校		開講年度	平成	 ;29年度 (2	017年度)	叔	受業科目 1	 電子工:	 学 Δ			
科目基礎情報		A CLIT			1 /3/	127 + 12 (2	.017十以)	J.		-	<u>, , , , , , , , , , , , , , , , , , , </u>			
科目番号							科目区分		専門 / 必修	専門 / 必修				
授業形態		講義					単位の種別と	単位数						
開設学科電気工学科				1			対象学年		3					
開設期後期							週時間数	2						
教科書/教材 担当教員	「電子デー 仙波 伸せ		R工学(第2版)」 古川静二郎、荻田陽一郎、			浅野種正 著(森北出版)								
 到達目標		•												
①原子、固体内 ②半導体の基本	での電 的性質	子の基本的 を理解し、	性質を 真性・	を理解し、金/ ・n型・p型 <i>0</i>	属・半導 D違いを	導体・絶縁体(:説明できる。	の違いを説明で	ごきる。						
ルーブリック	フ													
						標準的な到達レベルの目安		最低限の到達レベルの目安 (可)		の目安	未到達レベルの目安		目安	
評価項目1 🔄			ネルギー帯と関連付けて 属・半導体・絶縁体の違 、特徴を説明できる。			化学結合、結晶の形成、エ ネルギー帯の形成について 説明できる。		原子内での電子配置と化学 結合の形式を説明できる。		C1L子 きる。	原子内での電子配置と化学 結合の形式を説明できない。		明できない	
評価項目2			純物密度とpn積一定の 系を用いてキャリヤ密度 対めることができる。			フェルミ準位	ャリヤ密度と の関係を説明	n型・p	キャリヤ(伝導電子・正孔)の形成と導電型(真性・ n型・p型)の違いを説明 できる。			キャリヤ(伝導電子・正孔)の形成と導電型(真性・ n型・p型)の違いを説明 できない。		
学科の到達目	3標項	目との壁	 係					ا د د ی			CC,6V1			
教育目標 (C)	- W>-	<u>, </u>	1717											
教育方法等														
概要		第3学期半導体デ	開講バイス	スは今日のエリ	レクトロ	コニクスには	マかせない存在 この授業では	です。多	種多様なデル	「イスが	開発され終	売けてい	ハますが、	
	方注						この授業では 業を進めます。	・キ導体に	. 対9る基礎知	□誠を字で	ン よ り。			
注意点	7374	化学、 予習お に努めて クラス	物理の よび復 くださ 全体の	の知識が重要で とい。学習成り の到達度が低い	 です。必 とを心排 果の評値 い場合を	必要に応じて行 計けてください 面には本試験の で除いて、再記	を 夏習してくださ い。学習成果を の得点を加味し 式験は実施しま ます。発見した	ます。 せん。実	施する場合は	tが、必 ^っ は、本試!!	ず自分の力 験の得点を	フで解え	決するよう します。	
授業計画														
		週	授業内容						週ごとの到達目標					
		1週	電子と	子と結晶①				0	原子内の電子の状態及び電子配置について説明できる。					
		2週	2週 電子		子と結晶②				原子の集合体である結晶及び結晶中での原子の結合に ついて説明できる。					
		3週	電子と	と結晶③					結晶の種類及び結晶面について説明できる。					
3.44	0	4週	エネノ	ルギー帯と自由電子①				ギー(原子内の電子の運動エネルギーとポテンシャルエネルギーについて説明できる。					
3rd(Q	5週	エネノ	レギー帯と自由電子②			成に	原子が集合して結晶を構成した場合のエネルギー帯形成について説明できる。						
		6週	エネノ	レギー帯と自由電子③				説明	結晶のエネルギー帯構造と電気伝導性の関係について 説明できる。					
		7週	半導体	本のキャリア	71			体と	真性半導体でのキャリヤの生成機構、および真性半導体と不純物半導体の違いについて説明できる。					
後期		8週	半導体のキャリア②					きる。	不純物半導体でのキャリヤの生成機構について説明で きる。					
		9週	キャリア密度とフェルミ			三準位①		関数の	半導体中のキャリヤ密度とフェルミ・ディラック分布 関数の関係について説明できる。					
		10週	キャリア密度とフェルミ準位②					できる	真性キャリヤ密度とフェルミ準位の関係について説明 できる。					
		11週	キャリア密度とフェルミ準位③					不純物半導体中のキャリヤ密度とフェルミ準位につい て説明できる。						
4th	Q	12週	半導体の電気伝導①					明で	半導体に電圧を印加した際のドリフト電流について説 明できる。					
		13週	半導体の電気伝導②					抵抗(半導体におけるオームの法則及び各導電形の半導体の 抵抗について説明できる。					
		14週	半導体の電気伝導③					キャ!	キャリヤの拡散及び拡散による電流について説明できる。					
		15週 定期試験 16週 試験返却												
 モデルコアナ	カリキ				幸日樗									
<u>こり /レコノ /</u> 分類	J J - [分野	, –	学習内容		 P容の到達目標					到達し	ベル		
22数 評価割合		اندررا		דוניום יון	l i Ell.		»·				± 1,4±1/	,, v	-^^~	
口口面	試懸		ZX:	 実	扣左		態度	,1 .º	 ·トフォリオ	レポー		合計		
総合評価割合	Λ.			0 487	р Г ІЩ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		・シオソオ	20	1.	100			
加強の其本的な														
理解	50		0		0		0	0		10		60		

思考・推論・創造への 適用力	30	0	0	0	0	10	40
汎用的技能	0	0	0	0	0	0	0
態度・志向性(人間力)	0	0	0	0	0	0	0
総合的な学習経 験と 創造的思考 力	0	0	0	0	0	0	0