宇部工業高等専門学校		開講年度	平成29年度 (2017年度)		授業科目	電気数学	
科目基礎情報	科目基礎情報						
科目番号	0026			科目区分	専門 /	専門 / 必修	
授業形態	講義			単位の種別と単位数	履修単	履修単位: 1	
開設学科	電気工学科			対象学年	2		
開設期	前期			週時間数	2		
教科書/教材	プリントを使	用する					
担当教員	成島 和男	·	·	·			
到達目標							

- 1) 微分、積分の計算方法を修得する。 2) 微分、積分の数学的、物理的意味を理解する。 3) 複素数の計算方法を習得し、数学的、物理的意味を理解する。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	最低限の到達レベルの目安 (可)	未到達レベルの目安				
評価項目1	微分、積分の計算の応用問 題ができる。	教材の例題や授業で行った 問題について、微分、積分 の計算ができる。	教材の例題や授業で行った 問題について、かろうじて 、微分、積分の計算ができ る。	微分、積分の計算ができない。				
評価項目2	微分、積分の数学的意味の 理解に加えて、物理的意味 を理解し始める。	微分、積分の数学的、物理 的意味を理解できる。		微分、積分の数学的意味を 理解できない。				
評価項目3	複素数の計算の応用問題が できる。加えて、数学的意 味の理解に加えて、物理的 意味を理解し始める。	教材の例題や授業で行った 問題について、複素数の計 算でき、数学的意味を理解 できる。	教材の例題や授業で行った 問題について、かろうじて 、複素数の計算ができる。	複素数の計算方法を習得できない。				

学科の到達目標項目との関係

教育目標 (E)

教育方法等

概要	第1、第2学期に週に一回講義する。電気工学を学ぶための道具となる数学を学ぶ。
授業の進め方・方法	講義形式で授業を進める。基礎項目を説明した後、例題を解く形式で進める。時折、宿題としてレポートを課す。本講義は、学生諸氏が経験する初めての本格的な専門科目である。時間も半期に限られているため、授業進度も早く、難しく感じるかもしれない。しかし、電磁気学や電気回路の履修するに当たっては、本科目の理解は必須である。このため、授業は、しっかり聞き、授業後は必ず復習を行い、完全に授業内容を理解すること。内容は微分・積分、並びに複素数となる。
注意点	微分、積分は、電磁気学で、複素数は、電気回路で必ず用いる数学上の道具である。 少なくとも、計算方法は、修得すること。計算ができないと、電気回路 I 、電気磁気学 I の学習に重大な支障をきたすことになる。 電気回路 I 、電気磁気学 I は、全ての専門科目の基礎となるので、電気数学で十分な学力をつけないと、専門科目が総崩れになる。

授業計画	画						
		週	授業内容	週ごとの到達目標			
		1週	微分係数①	平均の変化率、及び、極限値と瞬間の変化率について 理解でき、極限値や瞬間の変化率についての計算がで きる。			
		2週	微分係数②	微分係数とその意味について理解でき、微分係数の計 算ができる。			
		3週	導関数①	導関数や微分の性質について理解でき、初歩的な関数 の微分が計算できる。			
	1stQ	4週	小テスト	これまでの学習項目についてのテストを行う。			
前期	ISIQ	5週	小テスト返却 不定積分	小テスト問題の解説を通じて間違った箇所を理解できる。原始関数と不定積分とは、どのようなものであるか、理解できる。			
		6週	不定積分の性質	不定積分の一般的性質とその計算方法について理解でき、不定積分の計算ができる。			
		7週	定積分	定積分の意味、定積分と不定積分の関係について理解 できる。			
		8週	中間試験	中間試験を行う			
		9週	試験返却・解答解説 定積分の性質と求め方	試験問題の解説を通じて間違った箇所を理解できる。 定積分の一般的性質とその計算方法について理解でき 、定積分の計算ができる。			
		10週	複素数①	複素数の概念が理解でき、直角座標表示におけるベク トルの和、差、積、商の計算ができる。			
	2 - 40	11週	複素数②	複素数の基礎事項、直角座標表示、極座標表示等について理解でき、直角座標表示、極座標表示間の変換ができる。さらに極座標表示におけるベクトルの和、差、積、商の計算ができる。			
	2ndQ	12週	複素数③	j とベクトルの回転の関係が理解できる。共役複素数について理解できる。			
		13週	導関数②	合成関数及び陰関数の微分とその計算方法について理 解でき、これらの計算ができる。			
		14週	指数・対数関数の微分	指数・対数関数の微分とその計算について理解でき、 計算ができる。			
		15週	まとめと総合演習	これまでのまとめをし、総合演習を行う			
		16週	期末試験	期末試験を行う			

モデルコアカリキュラムの学習内容と到達目標								
分類	分野	学習内容 :	学習内容の到達目標				到達レベル	授業週
評価割合	評価割合							
	試験	発表	相互評価	態度	ポートフォリオ	レポート	合計	†
総合評価割合	80	0	0	5	0	15	100)
知識の基本的な 理解	60	0	0	0	0	10	70	
思考・推論・創 造への適用力	20	0	0	0	0	5	25	
汎用的技能	0	0	0	0	0	0	0	
態度・志向性(人 間力)	0	0	0	5	0	0	5	
総合的な学習経 験と創造的思考 力	0	0	0	0	0	0	0	