宇部工業高等曹	門学校	開講年度	令和02年度 (2	2020年度)	授業科目	微分積分 II C				
科目基礎情報										
科目番号	43007			科目区分	一般 / 必	修				
授業形態	講義			単位の種別と単位数	数 学修単位	学修単位: 2				
開設学科	物質工学科			対象学年	3					
開設期	後期			週時間数	2					
教科書/教材	「新微分積分	「新微分積分Ⅱ」 高遠節夫・他著(大日本図書)/ドリルと演習シリーズ 微分積分(電気書院)								
担当教員	加藤 裕基,吉林	村 浩								
到達日標										

- (1) 簡単な関数について、2次までの偏導関数を求めることができる。 (2) 合成関数の偏微分法を利用して、偏導関数を求めることができる。 (3) 偏導関数を用いて、基本的な2変数関数の極値を求めることができる。 (4) 2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。 (5) 極座標に変換することによって2重積分を求めることができる。

ı	ı → `ı	I /
,	L— / L	ハハク

ループラック				
	理想的な到達レベルの目安	標準的な到達レベルの目安	最低限の到達レベルの目安 (可)	未到達レベルの目安
評価項目1	偏導関数の定義を理解し ,2次までの偏導関数を正 確に求めることができる.	偏導関数の定義を理解し ,2次までの偏導関数を大 きな間違いなく求めること ができる.	偏導関数の定義を理解し ,2次までの偏導関数の基 本的な計算ができる.	偏導関数の定義を理解できず,2次までの偏導関数を求めることができない.
評価項目2	合成関数の偏微分法の意味 を説明でき,偏導関数を正 確に求めることができる.	合成関数の偏微分法の意味 を説明でき,偏導関数を大 きな間違いなく求めること ができる.	合成関数の偏微分法の意味 を説明でき,偏導関数の基 本的な計算ができる.	合成関数の偏微分法の意味 を説明できず,偏導関数を 求めることができない.
評価項目3	2変数関数の極値について 説明することができ, 偏導 関数を用いて正確に求める ことができる.	2変数関数の極値について 説明することができ, 偏導 関数を用いて大きな間違い なく求めることができる.	2変数関数の極値について 説明することができ, 偏導 関数を用いて 基本的な計算ができる.	2変数関数の極値について 説明することができず, 偏 導関数を用いて求めること ができない.
評価項目4	2重積分の定義を理解し , 累次積分に直して正確に 計算することができる.	2重積分の定義を理解し ,累次積分に直して大きな 間違いなく計算することが できる.	2重積分の定義を理解し ,累次積分に直して基本的 な計算ができる.	2重積分の定義を理解できず,累次積分に直して計算することができない.
評価項目5	極座標変換の意味を説明でき, それを用いて正確に計算することができる.	極座標変換の意味を説明でき、それを用いて大きな間違いなく計算することができる.	極座標変換の意味を説明でき、それを用いて基本的な計算ができる.	極座標変換の意味を説明できず, それを用いて計算することができない.

学科の到達目標項目との関係

教育方法等

概要	第4学期開講. 本講義では2年次既習の解析学の発展として,応用上重要な多変数関数の微分法について学ぶ.特に2変数関数の微分法および積分法を扱う.数学の応用を考える時,変数が2つ以上ある状況は極めて多い.その際,基本となるのがこの講義である.2変数関数の扱いは,基本的に1変数の場合と同様である.しかしながら,2変数特有の注意すべき点も多くあり,新しい現象をしっかりと学んで欲しい.
	2年生から学んできた微分積分も佳境を迎える、我々は3次元空間(時間を入れれば4次元空間)に暮らしている、そのため、微分積分を実際に活用する場合、変数が2個以上の場合がほとんどである、1変数の微分積分との違いをしっしかりと見極めて、正しい理解に努めてほしい、偏微分、重積分は特別日新しい概念ではない、今までに勉強してきた。

かりと見極めて、正しい理解に劣めてはしい、偏微力、重慎力は特別自制しいが心ではない。 ラまてに勉強してきたととの積み重ねである。 2年生の微分積分を苦手に感じている人は、これがラストチャンス.微分積分をしっかりと自分 のモンにしてほしい.

注意点

この科目で扱う内容は、今後学ぶ数学や物理および専門科目に直接使われるものであるため、内容をしっかりと身につけることが必要となる。そのためには、授業の予習・復習を欠かさず行い、問題集を活用して自発的に問題演習に取り組むことが重要となる。 また、今までに学んだ数学の内容が基礎となるので、しっかりと復習し、弱点を克服しておくことが肝要である。 継続的な学習の確認として小テストを実施する。小テストを実施するときは事前にアナウンスをするのでしっかりと勉強すること。なお、小テストの試験範囲は問題集から指定する。

授業計画

		週	授業内容	週ごとの到達目標
	3rdQ	1週	ガイダンス 偏微分(1) (教科書pp.26-28)	シラバスから,学習の意義,授業の進め方,評価方法 を理解できる. 2変数関数の概念を理解できる.
		2週	偏微分(2) (教科書pp.29-30)	2変数関数の極限値,連続性を理解し,それらを求めることができる.
後期		3週	偏微分(3) (教科書pp.31-32)	偏導関数を理解し,求めることができる.
		4週	偏微分(4) (教科書pp.33-35)	接平面を理解し,求めることができる.
		5週	偏微分(5) (教科書pp.36-38)	合成関数の微分法を理解し,計算することができる.
		6週	偏微分(6) (教科書pp.41-43)	高次偏導関数を理解し, 計算することができる.
		7週	偏微分(7) (教科書pp.44-45)	極大・極小を理解し,それらを求めることができる.
		8週	偏微分(8) (教科書pp.46-47)	極大・極小を理解し, それらを求めることができる.
	4thQ	9週	重積分(1) (教科書pp.59-61)	2重積分の定義を理解できる.

								1				
10週 重			重積分(教科	重積分(2) (教科書pp.62-63)			2重積分の定義,性質について理解できる.					
		11週		分(3) 科書pp.64-66	5)	2 重積分を計算することがで			ごきる.			
		12週		分(4) 斗書pp.67-69	9)			2重積分を計算することができる.				
		13週	重積分(教科	分(5) 斗書pp.70-72	2)	体積を求めることがで			できる.	₹る.		
		14週	重積分	分(6) 斗書pp.75-78	-			極座標を用いた2重積分の計算をすることができる.			ができる.	
	Ī	15週	期末記									
	Ī	16週	答案。	研不副 答案返却・解説 全体の学習事項のまとめ 授業改善アンケート				試験問題の解説を通じて間違った箇所を理解できる.				
モデルコス	アカリキ	ュラム	の学習	内容と到達	目標	Į						
分類		分里	予	学習内容	学習区	 内容の到達目標				到達レベル	授業週	
					2変数関数の定義域を理解し、不等式やグラフで表すことができる。			3				
				数学	合成関数の偏微分法を利用して、偏導関数を求めることができる。			3				
					簡単な関数について、2次までの偏導関数を求めることができる。			3				
基礎的能力	数学	数等	Ž		偏導関数を用いて、基本的な2変数関数の極値を求めることがで きる。			3				
					2重積分の定義を理解し、簡単な2重積分を累次積分に直して求めることができる。			3				
					極座植	極座標に変換することによって2重積分を求めることができる。			3			
					2重積分を用いて、簡単な立体の体積を求めることができる。			3				
評価割合												
試験						小テスト	l	ノポート	4	計		
総合評価割合 60					20	2	20	1	.00			
知識の基本的な理解【知識 ・記憶, 理解レベル】			10			5	5	5	5	50		
思考・推論・創造への適応力【適用,分析レベル】			10	0		5	5	5	2	20		
汎用的技能【論理的思考力】			10	0		5	5	5	2	20		
態度・志向性(人間力) 【 0 自己管理力】)			5	5	5	1	10		