宇部	 『工業高等	連門学		主度 平		2019年度)	担	業科目 応用	 月物理I	V		
		<u> </u>	- נו שנויו -	. / . 1 .	,-,v= + 1 /X (Z	11×1	×د ۱	~~ · · · · · // · · // · /	<u></u> 1			
	EIFE	0102				NDGA		専門 / 必修				
科目番号 授業形態		0103 講義				科目区分	}}{ / */-					
		_	쓰다			単位の種別と	甲似釵		履修単位: 1			
開設学科		物質工	子科			対象学年		4				
開設期	.1.1	前期 週時間数 2										
教科書/教	.材		物理学」原康夫	者(字術区	3青出版社)							
担当教員		城戸 秀	5 樹									
到達目標												
とする。 ①振動を記 ②波動を記	説明できる。 説明できる。	,	を習得し、物理	で学んだり	現象を、ベクト	ル、微分積分を 	用いて記	述でき、論理的	思考力を	を身につける	ことを目的	
ルーブリ	<u> </u>				1							
			想的な到達レ^	いの目安	標準的な到達	レベルの目安		到達レベルの目	安未	到達レベルの)目安(不可	
振動を説明できる。 動			展動、減衰振動、強制振 が問題を解くことができ 減衰振動、			制振動を説明	(可) 単振動を説明できる。		単担	振動を説明で	ぎきない。	
次動を説明できる。 波動				程式を説明できる。 説明できる。 説明できる。						理想気体の状態量の計算だ できない。		
学科の至	到達目標功	1月との	 関係		-							
<u>」 11002</u> 教育方法		· · · · · · · · ·										
	4 1	第2学										
既要			明開講 業で学ぶ「振動	」 、「波重	訓」は、今後の	専門科目の基礎	となるも	のです。				
受業の進& 主意点	め方・方法	試験で 自学自 解らな 三角関 数式を	は、記憶力を問習の習慣を未だいところがあっ 数、ベクトル、 丸暗記するので	うような問題 身につけて たら、いこ 微分積分の はなく、数	問題は出しません ていない方は、「 つでも質問して の知識が重要で 数式が意味してい	ん。皆さんの選 早く身につけて ください。頑張 す。 いることを理解	応力を問 ください りましょ	度を把握してくだ、 、授業中は説明: 理解してくださ! うような問題を! 。う。	ハ。 出すよう	らにしていま	す 。	
	 Fi	物理量	には単位があり	、単位系を	を理解すること	も大事です。						
	-	週	授業内容				調ごと	 の到達目標				
			ガノガンフ									
		1週	単振動				単振動	単振動を説明できる。				
		2週	単振り子	 長り子			単振り子、単振り子の等時性を説明できる。					
		3週	減衰振動			減衰振動を説明できる。						
	1stQ	4週	強制振動				強制振動を説明できる。					
	ISIQ	5週	単振動の合成					単振動の合成を説明できる。				
		6週	波動				安脈刺の白成を説明できる。 波動を説明できる。					
		7週					i	波動を説明できる。				
			波動方程式									
前期		8週		は合わせの原理			_	重ね合わせの原理を説明できる。				
		9週	反射と屈折	と回折			反射と屈折をを説明できる。					
		10週	干渉と回折					回折を説明でき				
		11週	固有振動				固有振動を説明できる。					
	2ndQ	12週	音波				音波を説明できる。					
		13週		定期試験				ドップラー効果を説明できる。				
		14週	光波				光波を	光波を説明できる。				
		15週	定期試験									
		16週										
モデルニ	コアカリ=	<u> キュラム</u>	の学習内容と	_到達目	票						,	
分類		分野	学習内	容 学習	習内容の到達目標	票				到達レベル	授業週	
基礎的能力				波の	波の振幅、波長、周期、振動数、速さについて説明できる。				3			
				横波	波と縦波の違いについて説明できる。			3				
				波σ	波の重ね合わせの原理について説明できる。				3			
					皮の独立性について説明できる。				3			
				2つ	2つの波が干渉するとき、互いに強めあう条件と弱めあう条件について計算できる。			件に	3			
	 自然科 ^学	学 物理	波動	定常	定常波の特徴(節、腹の振動のようすなど)を説明できる。 ホイヘンスの原理について説明できる。			;	3			
	- - -		"\\"\"	ホー					3			
				波σ	波の反射の法則、屈折の法則、および回折について説明できる。			<u>きる。</u>	3			
				とカ	弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。 気柱の長さと音速から、開管、閉管の固有振動数を求めることができる(開口端補正は考えない)。 共振、共鳴現象について具体例を挙げることができる。				3			
				気柱				ことが	3			
									3			
					きる(開口端補正	は考えない)。				3 3		

			- *	- 直線上の運動にお を求めることができ	いて、ドップラー る。	効果による音の振	動数変化	3			
			E	自然光と偏光の違いについて説明できる。							
				光の反射角、屈折角				3			
			浙 日	支長の違いによる分 月できる。	散現象によってス	ペクトルが生じる	ことを説	3			
評価割合											
	試験	演習	3・小テスト	相互評価	態度	ポートフォリオ	その他	î	 合計		
総合評価割合	60	40		0	0	0	0	1	100		
知識の基本的な 理解【知識・記 憶、理解レベル 】	40	20		0	0	0	0		50		
思考・推論・創造への適用力【 適用、分析レベル】	20	20		0	0	0	0	2	40		
汎用的技能【	0	0		0	0	0	0	()		
態度・志向性(人間力)【 】	0	0		0	0	0	0	()		
総合的な学習経 験と創造的思考 力【 】		0		0	0	0	0	0)		