						コンピュータシミュレーショ
大島商船高等専門学校		開講年度	平成29年度 (2017年度)		授業科目	コンCユータシミュレーショ ン
科目基礎情報						
科目番号	0009			科目区分	専門 / 必修	
授業形態	授業			単位の種別と単位数	学修単位: 2	
開設学科	電子・情報システム工学専攻			対象学年	専1	
開設期	後期			週時間数	2	
教科書/教材	自作教材					
担当教員	岩崎 寛希					
到達目標						
本科目はVisualBasic言語(以下、VB)を用いて、物理や力学で習った質点、剛体の運動のリアルタイム、ファーストタイム、スローモーションシミュレーションを行う。具体的な学習到達目標は以下のとおりである。 (1)物理、力学での質点の運動方程式を立て、解析的に解くことができる。 (2) VBでコーディングされた2次元グラフィックライブラリを用いて2次元の描画を行うことができる。 (3) VBのオブジェクトである"タイマー"を用いて、微小時間ごとの数値積分を用いて、ボールの自由落下、バウンドのシミュレーションを実行						
(3) というプランエットである。 (4) 演算的な 2 階微分方程式の解析方法であるルンゲクッタ法によって、単振り子のシミュレーションを実行できる。 (5) シミュレーションによって得られる動画の吟味のため、運動緒元をログファイル化して残す。このログファイルをオフラインでエクセル等を用いて時系列的にグラフにでき、吟味作業を行って、プログラムコードを修正しながらシミュレーションを完成できる。						
ルーブリック						
	Ŧ	里想的な到達レ/	ベルの目安	標準的な到達レベル	レの目安	未到達レベルの目安
武徳帝日		式でき、数学的(D運動方程式を立 こ解析して運動緒 解くことができる	運動方程式は立式で数学的解析ができる		運動方程式を立式できるが、数学 的解析がまったくできない。

$\mathcal{O} = \mathcal{O} \mathcal{O} \mathcal{O}$					
	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安		
評価項目1	質点の力学例題の運動方程式を立 式でき、数学的に解析して運動緒 元の時間変化を解くことができる	運動方程式は立式できるが、一部 数学的解析ができる。	運動方程式を立式できるが、数学 的解析がまったくできない。		
評価項目2	与えられた 2 次元グラフィックラ イブラリを使いこなし、グラフや 運動航跡を描画できる。	手をかけてグラフィックを描画で きる。	コンピュータ画面に 2 次元の描画 ができない。		
評価項目3	オブジェクト"タイマー"を用いて 、リアルタイム、ファーストタイ ム、スローモションなどを駆使し ながらボールの自由落下、バウン ドのシミュレーションを完成でき る。	シミュレーション動画は見様見真 似で完成したが、うまくいかない ときの問題解決力が劣る。	こちらがプログラミングコードを 示さないと、シミュレーション動 画ができない		
評価項目4	こちらが与えたルンゲクッタ法例 を単振り子解析に応用でき、シミ ュレーション動画を作れる。	ルンゲクッタ法事例を単振り子に 応用するのにてこづる。	単振り子シミュレーション動画を 教えても完成できない。		
評価項目5	動画完成までの過程で生ずる問題 点の原因を見つけ出し、解決策を 講じて完成まで持っていける。	問題点は理解できるが、原因や解 決方法を見出す力に欠ける。	問題天の原因はもちろん、解決策 も見いだせない。		

学科の到達目標項目との関係

JABEE J(03) 本校 (1)-c 専攻科 (5)-c

教育方法等

概要	本科目はVisual Basic言語(以下、VB)を用いて、物理や力学で習った質点、剛体の運動のリアルタイム、ファーストタイム、スローモーションシミュレーションを行う。
授業の進め方・方法	マルチメディア室で各自マシンに向かいながら、スクリーンに投影した教員用画面を見ながらプログラミングを行っていく。 本科での物理、力学での運動方程式の解析はホワイトボードに板書しながら、グループデスカッションして講義する。
注意点	中間、期末とまずは教員と学生1対1で口述試験を実施、3問連取で合格とする。自学自習を行い、分りもよかった学生は早い段階で口述合格する。一方、理解が難しくても教員画面のコードをそのまま打ち込んだ学生はとことん、合格しない。しかし、その後行う筆記試験では難儀しててこづった学生は記述できる。一方、早く合格した学生も合格後質問が変化していった過程を追いかけながら筆記試験に臨むと、応えに窮する。

授業計画

		週	授業内容	週ごとの到達目標		
後期		1週	シミュレーションの意義、効用	講義で行い、ノートにまとめさせる。		
		2週	物理、力学における質点運動の運動方程式とその数学 解析	講義で行い、ノートにまとめさせる。		
		3週	加速度が一定の場合、VBを用いた微小時間ごとの数値積分による逐次解析プログラムの作成	教員画面を見ながらのプログラミングができる		
	2-40	4週	与えた 2 次元グラフィックにようる動画描画テクニック	教員画面を見ながらのプログラミングができる		
	3rdQ	5週	ボールの自然落下と地面でのバウンドシミュレーション	シムレーションでき、動画によってバウンドする様子 を再現できる。		
		6週	「単振り子」の運動方程式と数学的解析	講義で行い、ノートにまとめさせる。		
		7週	口述試験と筆記試験および返却	口述試験は放課後に、筆記試験は授業時間に実施する。		
		8週	「ルンゲクッタ法」の例を単振り子シミュレーション に応用、空気抵抗の導入	教員画面を見ながらのプログラミングができる		
	4thQ	9週	「ルンゲクッタ法」の例を単振り子シミュレーション に応用、空気抵抗の導入	教員画面を見ながらのプログラミングができる		
		10週	振り子のシミュレーション中の運動緒元をログファイルに残し、オフラインで時系列グラフを描かせ、シミュレーションの吟味を行う。	教員画面を見ながらのプログラミングができる		

	11週	振り子のシミュレーショルに残し、オフライン ユレーションの吟味を行	ョン中の運動緒元をログファイ で時系列グラフを描かせ、シミ テう。	教員画面を見ながらのプログラミングができる		
13週 がりながら落 13週 座標変換を用 がりながら落 14週 座標変換を用 がりながら落 回転シミュフラ 残し、オフラ ラ		座標変換を用いた回転返がりながら落下)	軍動シミュレーション(坂道 転	剛体の回転運動について講義で行い、ノートにまとめ させる。		
		座標変換を用いた回転返がりながら落下)	重動シミュレーション(坂道 転	教員画面を見ながらのプログラミングができる		
		座標変換を用いた回転返がりながら落下)	重動シミュレーション(坂道 転	教員画面を見ながらのプログラミングができる		
			中の運動緒元をログファイルに 系列グラフを描かせ、シミュレ	教員画面を見ながらのプログラミングができる		
		口述試験と筆記試験お	よび返却	口述試験は放課後に、筆記試験は授業時間に実施する。		
評価割合						
		口述試験	筆記試験	出席状況	合計	
総合評価割合		30	60	10	100	
基礎的能力		10	20	10	40	
専門的能力		10	20	0	30	
分野横断的能力		10	20	0	30	