	 有工業高	等専門	 門学校	開講年度 平成27年度 (2015年度)			授業科目	半導体結晶工	 学	
科目基础		3 (3 (3)	331/	1/13213 1 /2	117-7-11/2 (-		JAZRITIE	1 (3)11/1444	•	
科目番号 0056			0056			科目区分	科目区分 専門 / 選択			
授業形態				_		単位の種別と単位				
開設学科				·工学科(平成25年度以前入学生)		対象学年	5			
開設期						週時間数	2			
数科書/教材 なし/なし										
担当教員	.,,,		s c , c c 冢本 史郎							
到達目標			3. 1 2.2							
1. 半導位 2. 半導位 3. 半導位	体結晶の 体結晶の 体結晶の	背景と 成長方 評価方 ット結	性質を理解して 法を理解して 法を理解して 品について、	して、特に「バン こ、特に「分子線 こ、特に「走査型 その利用目的と	・ド構造」について なこピタキシィ」に とトンネル顕微鏡」 た方法について説明	説明ができる。 ついて説明ができる について説明ができる ができる。	る。 きる。			
ルーブ!	リック									
				理想的な到達レベルの目安標準的な到達し			・ベルの目安 未到達レベルの目安			
評価項目1			2	半導体結晶の背景と性質を理解し 半導体結晶			背景と性質を理解し 半導体結晶の背景と性質について 全く説明できない。			
評価項目2					長方法を理解して タキシティ」の動 説明ができる。	半導体結晶の成長 、「分子線エピタ 要を説明ができる	アキシティ」の概		長方法の種類と特 きない。	
評価項目3				、「走査型トンネ 作原理を明確に記		要を説明ができる	スル顕微鏡」の概 る。	半導体結晶の評徴を全く説明で	価方法の種類と特 きない。	
評価項目4				半導体量子ドット その原理と応用を きる。	ト結晶について、 を明確に説明がで	半導体量子ドット その利用目的と方 要を説明ができる	5法についての概	半導体量子ドッいて全く説明が	ト結晶の特徴につ できない。	
学科の発	到達目標	票項目	との関係							
教育方法	去等									
概要 授業の進	め方・方	<u> </u>	半導体結晶工	ニ学」では、結晶	の成長から評価方法	法までの基礎知識を	を学ぶと共に、次	ことであり、現代社 場品や状況を生み出 で世代デバイス(例)基礎的素養の修得	えば、単一光子光	
注意点		15	分で調べ、十	-分勉強しておく	礎知識はもちろん ことが望ましい。 応答も歓迎する。	のこと、特に後半、 また一回の講義の)	「量子力学」カ 半分は質問の時間	が重要となってくる。 引とし、受講前の疑	ので、受講前に自 問に皆で答えるか	
授業計画	—	1	1							
後期		週		授業内容			週ごとの到達目標			
		1边	し 半導	半導体結晶工学とは			半導体結晶工学の意義について説明できる。			
		2近	世	性質(Ⅰ)			半導体結晶の歴史的背景を理解して、その一般的性質 を説明できる。			
		3边	直 性質	性質(Ⅱ)			バンド構造を理解して、構造の違いによる性質の変化 を説明できる。			
	3rdQ	4近		成長方法			一般的な成長方法の種類について説明できる。			
		5近		分子線エピタキシィ法 (I)			分子線エピタキシィ法の概要を説明できる。			
		6边	分子	分子線エピタキシィ法(Ⅱ)			半導体薄膜結晶の成長過程について理解する。			
		7近		後期中間試験						
		8近	直 評価	評価方法(Ⅰ)			一般的な評価方法の種類について説明できる。			
		9边		評価方法(Ⅱ)			反射型高速電子線回折について理解する。			
		10		走査型トンネル顕微鏡(Ⅰ)			走査型トンネル顕微鏡の概要を説明できる。			
		11	.週 走習	走査型トンネル顕微鏡(Ⅱ)			原子像観察の原理について理解する。			
	4thQ	12	週量	量子ドット基礎(I)			量子ドットの歴史的背景と基礎について説明できる。			
	TuiQ	13	週量到	量子ドット基礎(Ⅱ)			量子ドットの成長過程について理解する。			
		14	週量	量子ドット応用(I) 量子ドット応用(II)			一般的な応用方法について説明できる。			
		15	週量				レーザ構造に応用した場合の特徴について理解する。			
] 1		週 後其	後期期末試験						
モデル	コアカリ	ノキュ	ラムの学	習内容と到達	 目標					
<u>ニン / レ -</u> 分類			分野		<u>ロッ</u> 学習内容の到達目標			到達1	ノベル 授業週	
2000 評価割さ	 숙		1//		2 H. 1H ~ 21/EH.			121/5-1	7. JAKE	
. I IMI 🗆 J E		試験	Į	 発表	相互評価	態度	ポートフォリオ	ナーその他	合計	
総合評価割合 70				0	0	0	0	30	100	
基礎的能力 0				<u> </u>	0	0	0	30	30	
		50		<u> </u>	0	0	0	0	50	
		20		<u> </u>	0	0	0	0	20	
1 主じて甲位川	ロリロヒノナー	/ U	10		IV	137	13.7	IU	1711	

分野横断的能力 20