受業の進め方・方法 「で課題を課す。 「授業時間30時間」 授業中に各自でLMSにアクセスしたり、宿題をオンラインで提出すること。	3 後期:2 の目安 に加え、変圧								
日日報号	で の目安 で加え、変圧								
理解形態 担業 単位の種別と単位数 対象学年 間認知 電気 ス 対象学年 間認期 後期 週時間数 後期 週時間数 後期 週時間数 後期 週時間数	で の目安 で加え、変圧								
親国	後期:2 の目安 に加え、変圧								
料書/教材 基本からわかる 電気機器講義ノート(オーム社)/ なし 朴 英樹 朴 英樹 朴 英樹 朴 英樹 朴 英樹 小 英樹 別達目標 第 変圧器の原理と特性について説明できる。	の目安に加え、変圧								
対	に加え、変圧								
#達目標 変圧器の原理について説明でき、等価回路を用いて1次・2次諸量を計算できる。	に加え、変圧								
 ・ 変圧器の原理と特性について説明できる 高期機の原理について説明できる 高期機の原理について説明できる 高沸機の原理について説明できる 直流機の原理について説明できる 直流機の原理について説明できる 直流機の原理について説明できる 直流機の原理について説明できる 直流機の原理について説明できる 超気回路の必要性について説明できる 概気回路の必要性について説明でき、磁気回路のよりに 標準的な到達レベルに加え、	に加え、変圧								
理想的な到達レベルの目安	に加え、変圧								
理想的な到達レベルの目安 標準的な到達レベル 標準的な到達レベルに加え、変圧 器の特性値を計算できる。 最低限の到達レベル 温を計算できる。 最低限の到達レベル 調査を計算できる。 最低限の到達レベル 機のトルクと出力を計算できる。 最低限の到達レベルできる。 最低限の到達レベルできる。 最低限の到達レベルできる。 最低限の到達レベルできる。 最低限の到達レベルに加え、誘導機の回転速度と2次側諸量を計算できる。 最低限の到達レベルに加え、励磁回路の種類による構造や諸量の違いについて説明し、各トルクと回転数を計算できる。 標準的な到達レベルに加え、アールの記測から磁気回路中の磁束の大きさを計算できる。 標準的な過速しベルに加え、アールの記測から磁気回路中の磁束の大きさを計算できる。 最低限の到達レベルを含る。 標準的な過速しベルに加え、アールの記測を計算できる。 最低限の到達レベルで記明と考する。 最低限の到達で大型の路のオームの法則を含する。 最低限の到達で大型の路のオームの法則を含する。 最低限の到達で大型の路のオームの法則を含する。 最低限の到達できる。 で表別を書き、磁気回路中の磁束の大きさを計算できる。 で表別達取を課すでで表的な遺流機、誘導機、同期機について、各回転機の原理・構造を自動とする。 環難を関する。 管理を関する。 では表別を理する。 では表別を理する。 では表別を理する。 では表別を記述していて、第一次を言うにMSにアクセスしたり、宿頭をオンラインで提出すること。 レボート(ボートフォリオ)作成時においては著作権を適守し、データ受業の属性・履修上の区分 回接 概論 変別 概論 2週 概論 変圧器 る。 と週 極気回路 3週 変圧器 3週 変圧器 33週 変圧器 31回 概論 23回 磁気回路 31回 変圧器の特性 25回 変圧器の対し 25回	に加え、変圧								
標準的な到達レベルに加え、変圧 器の特性値を計算できる。	に加え、変圧	準的な到達レベルの目安 最低限の到達レベルの目安							
達目標2		変圧器の原理と役割を説明できる。							
機の巨転速度と2次側諸量を計算で 機の誘導起電力とす きる。 最低限の到達レベルに加え、励磁	ー に加え、同期 転速度を計算	同期機の原理と役割について説明できる。							
回路の種類による構造や諸量の違いについて説明し、各トルクと回転数を計算できる。	に加え、誘導 べりを計算で	読 誘導機の原理と役割について説明 できる。							
過速目標5									
学習・教育到達度目標 D-1 教育方法等 「 「 「 「 「 「 「 「 で 「 大きのないでで、 で で 大きのないでで、 で で 大きのないでで、 で 大きのないでで、 で で 大きのないでで、 で 大きのないでで、 で 大きのはの方・方法 「 に に に に に に に に に に に に に に に に に に									
次育方法等									
交流静止電力変換器である変圧器の原理と構造および各種特性の理所で代表的な直流機、誘導機、同期機について、各回転機の原理・構造を目的とする。									
交流静止電力変換器である変圧器の原理と構造および各種特性の理所で代表的な直流機、誘導機、同期機について、各回転機の原理・構造を目的とする。									
受業の進め方・方法 「で課題を課す。 「授業時間30時間」 授業中に各自でLMSにアクセスしたり、宿題をオンラインで提出すること。	きや等価回路を	を基礎とした基本特性についての理解 							
提出物に関しては、必ず期限を守って提出すること。 レポート(ポートフォリオ)作成時においては著作権を遵守し、データ 受業の属性・履修上の区分 コアクティブラーニング ロ ICT 利用 ロ 遠隔授業対応 受業計画 週 授業内容 週。 1週 概論 2週 磁気回路 アニアのは	图 3 0 時間】								
□ Pクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 遠隔授業対応 □ 選問 □ 授業内容 □ 週									
受業計画 1週 授業内容 週 1週 概論 ② 2週 磁気回路 ア 3週 変圧器 磁 3週 変圧器 塩 5週 変圧器の特性 出 5週 変圧器の特性 出 6週 起雲力 ベ		 □ 実務経験のある教員による授業							
週 授業内容 1週 概論 2週 磁気回路 3週 変圧器 3rdQ 4週 変圧器の等価回路 5週 変圧器の特性 6週 起票力		□ 大物性歌ののも教具による技术							
週 授業内容 1週 概論 2週 磁気回路 3週 変圧器 3rdQ 4週 変圧器の等価回路 5週 変圧器の特性 6週 起票力									
1週 概論 2週 磁気回路 3週 変圧器 4週 変圧器の等価回路 5週 変圧器の特性 6週 起索力	 ごとの到達目								
2回 1位 1位 1位 1位 1位 1位 1位 1	変圧器、直流機、同期機、誘導機の原理の相違点と類 以点を説明できる								
3週 変圧器 3rdQ 4週 変圧器の等価回路 変所 5週 変圧器の特性 出流率 6週 起源力	アンペールの法則から磁気回路のオームの法則を導 、磁気回路の諸量を計算できる 磁気回路のオームの法則から、起磁力の保存則と変								
3rdQ 中週 友工品の寺価回路 作月 5週 変圧器の特性 出。率 6週 起票力	比と巻数比の関係式を導き、変圧器の諸量を計算できる。								
		変圧器の回路から磁気回路を取り除いた等価回路図を 作成し、2次側の諸量を計算できる。 出力電力と各種損失の値を用いて、規約効率と全日窓							
2	成し、2次側 σ	率を求めることができる ベクトル形式と微分方程式形式で運動起電力を表し、							
	成し、2次側の 力電力と各種持 を求めることが クトル形式と	その大きさを計算することができる ベクトル形式と微分方程式形式で電磁力を表し、その 大きさを計算することができる							
8週 中間試験	成し、2次側の 力電力と各種持 を求めることが クトル形式とその大きさを計算 クトル形式とそ	<u> </u>							
in in the second	成し、2次側の 力電力と各種持 を求めることが クトル形式とその大きさを計算 クトル形式とそ								
10周 同期発療機 同期	成し、2次側の 力電力と各種技 を求めることが クトル形式とその大きさを計算 クトル形式とそ きさを計算する	 							
4thQ 同期乘動機 同期	成し、2次側の 力電力と各種技 を求めることが クトルきさ式さい クトンを計算 クランを でで で で で で で で で で で で で で で で で で で	方法を説明し、円周上のある時点ある の磁束の大きさを計算できる 電原理を説明し、同期発電機が発生す							
· 古	成し、2次側の 力と名種が 力となることが クトトささ、式きい クトトさを、式きい クラントの 大きさを、式きい では、 では、 では、 では、 では、 では、 では、 では、 では、 では、	の磁束の大きさを計算できる 電原理を説明し、同期発電機が発生す 計算できる 転原理を説明し、同期電動機のトルク							
12週 直流電動機 数	成し、2次側の 力と次側の 力となることを クカトカランスを クカトカランスを クカトカランスを でで でで でで で で で で で が の の の の の の の の の	の磁束の大きさを計算できる 電原理を説明し、同期発電機が発生す 計算できる 転原理を説明し、同期電動機のトルク							

	13¾ 14¾ 15¾		周	直流機	めの励磁回路			J.	励磁回路の種類による構造や諸量の違いについて説明 し、各トルクと回転数を計算できる					
									誘導電動機の回転原理とすべりについて説明し、回転 子回転速度を計算できる					
									誘導電動機の等価回路を書くことができ、2次側の誘導起電力と電流を計算できる					
		16	周	期末証	験									
モデルコアカリキュラムの学習内容と到達目標														
分類			分野		学習内容	学習内容の到達目標					到達レベル		授業週	
専門的能力					而与同吃	相互誘導を説明し、相互誘導回路の計算ができる。					4		後3,後4	
					電気回路	理想変成	理想変成器を説明できる。						後3,後4	
	分野別の専 門工学		専 電気・電子 系分野		電磁気	磁性体と磁化及び磁束密度を説明できる。					4			
					电似지 	電磁誘導を説明でき、誘導起電力を計算できる。					4			
						直流機の原理と構造を説明できる。					3		後12,後13	
						誘導機の原理と構造を説明できる。					3		後14,後15	
					電力	同期機の原理と構造を説明できる。					3		後10,後11	
						変圧器の原理、構造、特性を説明でき、その等価回路を説明でき る。					3		後3,後4	
評価割合														
定期		定期	期試験		小テスト		ポートフォリオ	発表・〕 勢	取り組み姿 その他			合計		
総合評価割合 60		60	0		20		20	0		0	100			
基礎的能力 2		20		0		0	0		0	20				
専門的能力 4		40		10		10	0	0		60				
分野横断的能力		0		10		10	0	0			20			