阿南工業高等専門学校		開講年度	平成28年度 (2	2016年度)	授業科目	化学工学実験
科目基礎情報						
科目番号	5302			科目区分	専門 / 🌡	必修
授業形態	実験・実習			単位の種別と単位数	複 履修単位	፲: 2
開設学科	化学コース			対象学年	3	
開設期	後期			週時間数	後期:4	
教科書/教材	化学工学実験テキスト(担当教員作成)					
担当教員	鄭涛,一森勇	人,奥本 良博,西	岡 守			
到達目標						

- 1.物質収支とエネルギー収支の観点から 流体、伝熱の原理が説明でき、操作を身につけること。 2. 気液分離(蒸留)、乾燥、液相吸着、粉体に関する原理が説明でき、操作を身につけること。 3. チーム内の人と協力して実験とデータ整理の実施ができること。 4. 原理を応用する能力と工程設計の内容について計画、データ整理、レポート作成能力を身につけること。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	流体(円管内摩擦係数の測定、流量係数の測定)、伝熱(二重管熱交換)の測定方法と原理が理解でき、理論値と実験値の比較ができる。	流体 (円管内摩擦係数の測定、流 量係数の測定)、伝熱 (二重管熱 交換)の測定方法と原理が理解で きる。	流体(円管内摩擦係数の測定、流 量係数の測定)、伝熱(二重管熱 交換)の測定方法と原理が一部、 理解できる。
評価項目2	気液分離(単蒸留、蒸留塔)、乾燥、吸着、粉体の測定方法と原理が理解でき、理論値と実験値の比較ができる。	気液分離(単蒸留、蒸留塔)、乾燥、吸着、粉体の測定方法と原理が理解できる。	気液分離(単蒸留、蒸留塔)、乾燥、吸着、粉体の測定方法と原理が一部、理解できる。
評価項目3	リーダーとしてチーム内の人と協 力して実験とデータ整理の実施が できる。	チーム内の人と協力して実験とデ ータ整理の実施ができる。	チーム内の人と協力して実験とデ ータ整理の実施が一部、できる。
評価項目4	原理を応用する能力と工程設計の 内容について計画とデータ整理が できる。	原理を応用する能力と工程設計の 内容についてデータ整理ができる 。	原理を応用する能力と工程設計の 内容についてデータ整理が一部、 できる。

学科の到達目標項目との関係

教育方法等

概要	化学工学の知識は独創性や応用面への活用が必要であり、学習には実験と実習が欠かせない。装置に直接触れて、装置の構成と操作方法を理解すると共に理論および計算式を実験データと対比して理解できるようにする。
授業の進め方・方法	各テーマごとの実験装置を操作してデータの取り方、データの解析を行い、装置内で発生する現象を工学的に処理する 方法を学び、実験を通じて解析に用いる物質、運動量、エネルギー収支および原理を深く理解させる。また、装置の運 転、配管の実習などを通して、実際の技術を習得する。
注意点	「化学工学基礎」「化学工学1」で習得した内容を基礎とする。数学、物理、物理化学、化学工学を十分に理解してお くことが望ましい。

海紫計画

3週 曲線を作成し、平衡含水率と限界含水率を推定させる。。	授業計画	1			
1週 の指導、一般的注意、数値取り扱い方法、物性定数な 実験目的を理解し、報告書作成法を習得する。			週	授業内容	週ごとの到達目標
3週 含水固体材料の熱風乾燥を行う。原料曲線と乾燥特性 乾燥操作を身に着ける。データを整理し、原料曲線 を保護性 ・			1週	の指導、一般的注意、数値取り扱い方法、物性定数な	実験目的を理解し、報告書作成法を習得する。
3週 曲線を作成し、平衡含水率と限界含水率を推定させる 密操特性曲線を作成できる。平衡含水率と限界含水の推定ができる。 平衡含水率と限界含水の推定ができる。 平野会別野 年齢をおよる。 中間の上載を対している。 中間の関係を対している。 できなが、 レーノルズ数と関係を対している。 できなが、 レーノルズ数と関係を対している。 できなが、 レーノルズ数と関係を対している。 では、			2週	固体乾燥に関する座学。	固体乾燥に関する理論を理解する。
算を行う。			3週	含水固体材料の熱風乾燥を行う。原料曲線と乾燥特性 曲線を作成し、平衡含水率と限界含水率を推定させる。	乾燥操作を身に着ける。データを整理し、原料曲線と 乾燥特性曲線を作成できる。平衡含水率と限界含水率 の推定ができる。
を行う。		3rdQ	4週		
第6週の吸着等温線による解析を通じて、吸着平衡の原理を理解し、吸着等温性作成ができる。 8週 蒸留塔、流体、粒度分布、熱移動の座学を行う。 蒸留塔、流体、粒度分布、熱移動の原理を理解する。 蒸留塔、流体、粒度分布、熱移動の原理を理解する。 素留塔を用いて、連続精留を行い、充填物の性能を確かめるとともに、内部観察を通じて気液の物質移動の機構を理解する。 10週 円管の摩擦係数を測定する方法を学ぶ。また、レーノルズ数と摩擦係数の関係を理解させる。 10週 円管の摩擦係数を測定する方法を学ぶ。また、レーノルズ数と摩擦係数の関係を理解する。 高温高圧水を発生する装置を用いて水蒸気の温度と圧力を調製し、管内流体の温度と流量を測定する。同時に加熱による熱交換の熱収支、熱流量と総括伝熱係数を測定する。 管内流体の温度と流量を測定する。 管内流体の温度と流量を測定する。 管内流体の温度と流量を測定する。 での熱収支、熱流量と総括伝熱係数を測定する。 を測定する。 を設置的ない、粒度分布図を作成する。 第分布図、粒度分布図を作成する。 ま設別の供表を行る。また、ファルを構み行る。 またの生になる。 またの性になる。 またいはなる。 またい			5週		pH測定、流量測定、気液平衡などに関する基本操作ができる。
「原理を理解する。 作成ができる。 作成ができる。 「作成ができる。 「展別 「原理を理解する。 「作成ができる。 「一点 「原理を理解する。 「一点 「原理を理解する。 「一点 「原理を理解する。 「一点 「原理を理解する。 「一点 「原理を理解する。 「原理を理解する。 「原理 「原			6週	活性炭に対する酢酸の吸着実験を行う。	吸着の操作ができる。
接期 接回 接回 接回 接回 接回 接回 接回			7週		吸着量の測定より、吸着平衡を理解し、吸着等温性の 作成ができる。
2月 2月 2月 2月 2月 2月 2月 2月			8週	蒸留塔、流体、粒度分布、熱移動の座学を行う。	蒸留塔、流体、粒度分布、熱移動の原理を理解する。
10년 ルズ数と摩擦係数の関係を理解させる。	後期		9週	かめるとともに、内部観察を通じて気液の物質移動の	連続蒸留の原理と操作を理解する。気液の物質移動の 機構を理解する。
11週			10週	円管の摩擦係数を測定する方法を学ぶ。また、レーノ ルズ数と摩擦係数の関係を理解させる。	管路を流れる流体の摩擦係数を測定する方法を習得し 、レーノルズ数と摩擦係数の関係を理解する。
12週 数分布図、粒度分布図を作成する。 る。			11週	力を調製し、管内流体の温度と流量を測定する。同時に加熱による熱交換の熱収支、熱流量と総括伝熱係数	管内流体の温度と流量の測定す方法を習得する。熱交換の熱収支、熱流量と総括伝熱係数の測定方法を理解する。
		4thQ	12週	サンプルを篩分法により各粒子径ごとに分け、累積度 数分布図、粒度分布図を作成する。	篩分法の操作をみにつける。粒度分布図の作成ができ る。
13週 大阪の日本が交換性を行う。大阪のコンケストの中間を行う データ整理能力、レボート作成能力を身につける。			13週	実験習熟度検査を行う。実験コンテストの準備を行う。	データ整理能力、レポート作成能力を身につける。
14週 実験コ°テストを行う。 実験の設計、シミュレーション能力、実験の実施、 ータ解析能力を身に着ける。			14週	実験コ [°] テストを行う。	実験の設計、シミュレーション能力、実験の実施、データ解析能力を身に着ける。
工場見学。橘湾火力発電所を見学することによって、 化学工学の知識を深化させ、特に生成の効率と安全性 を理解させる。			15週	化学工学の知識を深化させ、特に生成の効率と安全性	化学工学の知識を深化する。工場生産の効率と安全性 への追求を理解する。
16週			16週		

モデルコアカリ	キュラムの学習に	内容と到達	目標					
分類	分野	学習内容	学習内容	内容の到達目標			到達レベル	授業週
評価割合								
	定期試験	小テスト		レポート・課題	発表	その他	合計	
総合評価割合	20	0		60	0	20	100	
基礎的能力	10	0		30	0	10	50	
専門的能力	10	0		30	0	10	50	
分野横断的能力	0	0		0	0	0	0	