阿南工業高等専門学校		開講年度	令和02年度(2020年度)	授	業科目	電気化学	
科目基礎情報								
科目番号	1555501			科目区分		専門/選択		
授業形態	授業			単位の種別と単位数	数	学修単位: 2		
開設学科	専門共通科目(本科)			対象学年		5		
開設期	後期			週時間数		2		
教科書/教材	教科書: Professinal Egineering Library 物理化学 福地賢治編(実教出版),参考書:一般化学(下) アトキンス(東京化学同人)							
担当教員	中村 厚信							
到達目標								

- 1. 電解質溶液の電気伝導現象について理解することができる。 2. 電場中でのイオンの挙動や電離平衡について理解することができる。 3. 電池の電極で起こる酸化還元反応について理解することができる。 4. 標準電極電位と起電力について理解することができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	最低限の到達レベルの目安
到達目標 1	電解質水溶液の電気伝導現象について説明でき、関連する計算ができる。	電解質水溶液の電気伝導率について説明できる。	電解質水溶液の電気伝導率を計算で求めることができる。
到達目標 2	電場中でのイオンの挙動や電離平 衡について説明でき、関連する計 算ができる。	電場中でのイオンの挙動や電離平 衡について説明できる。	電離平衡定数を計算で求めることができる。
到達目標 3	電池の電極で起こる酸化還元反応 について説明でき、関連する計算 ができる。	電池の電極で起こる酸化還元反応 について説明できる。	電池の電極で起こる酸化還元反応 について酸化数の変化を求めるこ とができる。
到達目標 4	標準電極電位と起電力について説 明でき、関連する計算ができる。	標準電極電位と起電力について説 明できる。	標準電極電位から起電力を求める ことができる。

学科の到達目標項目との関係

教育方法等

概要	電気化学は化学分野の中でも特に電気現象(電子移動)の化学的事象を扱う分野である。この分野は電池やエネルギー変換など様々な分野へ応用されている。本講義では、電気化学の基礎事項を中心に演習を交えながら説明していく。この科目は、企業で半導体開発を担当していた教員がその経験を活かし、電気化学についての講義を行う。
授業の進め方・方法	教科書に沿って講義していくが、不足している部分については演習問題などで補う。授業中にできるだけ演習を行うが、できなかった問題は自学自習の時間で行うこと。単元の区切りで小テストを行う予定なので、事前に十分復習を行っておいてください。
注意点	一般教養の化学で学んだ酸化還元反応や電気分解に関する知識を前提に授業を進めていくので、事前に十分復習をしておくこと。

授業計画

		週	授業内容	週ごとの到達目標
		1週	電解質の電離	電解質が電離したときの電離度を計算することができる。
		2週	電解質溶液の電気伝導性	モル伝導率を求めることができる。
		3週	イオン移動度と輸率	モルイオン伝導率を求めることができる。
	3rdQ	4週	アレニウスの電離説と電解質の活量	アレニウスの電離説が理解できる。
		5週	酸と塩基の電離平衡1	電離定数に関する計算をすることができる。
		6週	酸と塩基の電離平衡 2	電離定数に関する計算をすることができる。
		7週	電池の基礎	半電池の電池式を書くことができる。
		8週	中間試験	
後期		9週	酸化還元反応1	酸化還元反応式を書くことができる。
		10週	酸化還元反応 2	酸化数を求めることができる。
		11週	起電力と反応ギブズエネルギー	起電力から反応ギブズエネルギーを求めることができ る。
	4+hO	12週	標準電極電位	標準電極電位から起電力を求めることができる。
	4thQ	13週	電池の熱力学	ネルンストの式を用いて平衡定数を求めることができ る。
		14週	実用電池	いくつかの実用電池の原理を理解することができる。
		15週	電気分解とその応用	電気分解に必要な電流量を求めることができる。
		16週	期末試験	

モデルコアカリキュラムの学習内容と到達目標

こグルコグカントエンスの「日)日とお足口が								
分類	分野	学習内容	学習内容	の到達目標			到達レベル	授業週
評価割合								
	定期試験	小テスト		ポートフォリオ	発表・取り組み姿 勢	その他	合計	
総合評価割合	60	10		30	0	0	100	
基礎的能力	10	0		0	0	0	10	
専門的能力	50	10		30	0	0	90	
分野横断的能力	0	0		0	0	0	0	