香川高等専門学校		開講年度	平成30年度 (2018年度)		授業科	科目	機械工学実験 Ι		
科目基礎情報									
科目番号	0125		科目区分	専門	門 / 必(多			
授業形態	実験・実習		単位の種別と単位数	数 履信	修単位:	3			
開設学科	機械工学科(2018年度以前。	対象学年	4	4				
開設期	通年		週時間数	3	3				
教科書/教材	書/教材 各実験テーマで作成された実験指導書など								
担当教員	岩田 弘,山崎 容次郎,木原 茂文,高橋 洋一,上代 良文,前田 祐作,木村 祐人								
到達目標									

- 1.機械工学(材料力学,材料工学,加工学,流体工学),応用物理やマイコンの各分野において,実験・解析を実行し,結果を正確に解析・分析し,工学的に考察する能力を身につける。2.与えられた制約の下で計画的に結果の解析を進め,文書にまとめる能力を身につける。3.実験を通して,技術者に必要な責任感と倫理観を養う。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安		
到達目標1	機械工学,応用物理,マイコンに 関する実験,解析を実行し,結果 を正確に分析して,工学的に考察 できる。	機械工学,応用物理,マイコンに 関する実験,解析を実行し,結果 を分析して,考察できる。	機械工学,応用物理,マイコンに 関する実験,解析を実行できず ,結果を分析して,考察できない 。		
到達目標2	実験内容を分かりやすく報告書に まとめることができる。	実験内容を報告書にまとめること ができる。	実験内容を報告書にまとめること ができない。		
到達目標3	技術者に必要な責任感と倫理観を 実験と関連づけて説明できる。	技術者に必要な責任感と倫理観を 説明できる。	技術者に必要な責任感と倫理観を 説明できない。		

学科の到達目標項目との関係

学習・教育到達度目標 A-2 学習・教育到達度目標 C-1

教育方法等

概要	機械工学(材料力学,材料工学,加工学,流体工学),応用物理やマイコンの各分野において,実験・解析を行う。
授業の進め方・方法	1 班10 人程度の少人数構成で4 班に分かれ,1 年間を通じて下記24 テーマの実験を行う。実験は指導書に従って主体的に実施し,実験結果を整理して論理的に考察する。実験レポートは所定の書き方に従い,決められた期日までに提出する。各実験テーマの始めにシラバスを用いたガイダンスを行う。
注意点	この科目は指定科目です。この科目の単位修得が進級要件となりますので,必ず修得して下さい。 評価方法については,別紙の「機械工学実験I・II 評価方法(学生用)」も参照すること。 1回の実験は,2コマで実施し,年間24週間で行う。

授業計画

1X × 01E	7	1	T	
		週	授業内容	週ごとの到達目標
		1週	0. ガイダンス (岩田) 実験概要, レポートの書き方, 安全教育	実験概要およびレポートの書き方が理解できる。
		2週	1. 材料力学(前田) (1)軟鋼の弾性係数測定と引張試験	引張試験により静強度特性値が求められる。
		3週	(2) 軟鋼と鋳鉄の圧縮試験, せん断試験)	圧縮試験とせん断試験が行え,特性値が求められる。
		4週	(3) 鋳鉄の引張試験	引張試験により静強度特性値が求められる。
	1stQ	5週	(4) 真直はりと曲りはりの曲げ応力の実験	はりの曲げ応力の実験が行え,実験値と理論計算値と の一致 が確認できる。
		6週	(5) 衝撃試験, 組み合わせ応力の実験	衝撃試験が行え,衝撃値が求められる。組み合わせ応 力実験 の解析ができる。
		7週	(6) 軟鋼と鋳鉄のねじり試験	ねじり試験が行え,応力- ひずみ特性が描ける。
前期		8週	予備日	
		9週	2. 材料工学(木原, 伊藤) (1)鋼の標準組織と硬さ	鋼の平衡状態図を説明できる。
		10週	(2) 鋼の熱処理組織と硬さ	鋼の標準組織, 熱処理 (焼入れ・焼戻し) 組織の違いを説明できる。
		11週	(3) 鋼の非金属介在物と溶接組織	鋼中の非金属系介在物の影響を説明できる。
	2ndQ	12週	3. 加工学(木原, 高橋) (1)旋盤における表面粗さ	旋盤における表面粗さが測定でき, それについて考察 ができる。
		13週	(2) 旋盤における切削力	旋盤における切削力が測定でき, それについて考察が できる。
		14週	(3)ワイヤーカットによる加工実験	放電加工の原理が説明でき,簡単なワイヤーカットの プログラムが作成できる。
		15週	予備日	
		16週		
後期	3rdQ	1週	4. マイコン(山崎) (1)マイコンの概要, アセンブリ言語とマシン語	マイコンの基礎的な構成やI / O ボード, および簡単な出力装置の取り扱い方法が説明できる。
		2週	(2)I / O ボードを用いたLEDの点灯・点滅実験	マイコンの基礎的な構成やI / O ボード, および簡単な出力装置の取り扱い方法が説明できる。
		3週	(3) ポケコン搬送車のライントレース制御	スイッチ, センサ, ライト, モータ等の使い方, 回路 の接続方法が説明できる。
		4週	(4) PLCによるベルトコンベアの制御(概要)	PLC を用いて,基礎的なシーケンス回路のプログラムが作成できる。
		5週	(5) PLCによるベルトコンベアの制御 (演習1)	PLC を用いて, 基礎的なシーケンス回路のプログラムが作成できる。

		C,E		(c)	DICIE EZ A	リトコンベフの制作	』(定羽つ)	PLC を用いて,基	 礎的なシ-		 Dプログラム	
		6週		<u> </u>				が作成できる。				
		7週		予備日 カのつりあい, バネの自由振 カのつりあい, バネの自由振						動を細解し	説明できる	
<u>_</u>	8i			(1)	力のつりあい	, , 摩擦, 滑車, バネ	への自由振動	力のつりあい,バネの自由振動を理解し,説明できる 。				
	9週 10 11: 4thQ 12:				慣性モーメン			慣性モーメントを理解し,説明できる。				
			<u></u>		環境放射線の	·			し, 測定で	できる		
			<u>周</u>	6. 流 (1)	では で で で は は は は は は は は は は は は り は り し り り り り	た) D測定 圧力損失測定の原理を理解し			_ノ , 説明できる。			
			围	(2)	ピトー管の検	定流速測定の原理を理解し			理解し, 説	説明できる。		
		13i	固	(3)	管オリフィス	ス・管ノズルによる 流量測定の原理を理解し、源			理解し, 測	∰定できる。		
		14认		予備日								
		15i			<u> </u>							
ナー・ロー		16i =		모모쓰		·						
	アカリー	+1		子省	内容と到達					がましずま	松米田	
分類			分野		学習内容	学習内容の到達目標		歴的お原理や担免を	明らかに	到達レベル	投業週	
						するための実験手法	去、実験手順につ			3		
						実験装置や測定器の扱を身に付け、安全	D操作、及び実験 全に実験できる。	器具・試薬・材料の	正しい取	3		
						実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考察の論理性に配慮して実践できる。				3		
+++++++++++++++++++++++++++++++++++++++			工学実験技 術(各種測定 方法、 タ処理、 察方法)		術(各種測定	実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。			実験デー	3		
基礎的能力	上字基位	定			方法、デー	実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。				3		
					赤/J/仏)	実験・実習を安全性や禁止事項など配慮して実践できる。				3		
						個人・複数名での実験・実習であっても役割を意識して主体的に取り組むことができる。				3		
						共同実験における基本的ルールを把握し、実践できる。				3		
						レポートを期限内に提出できるように計画を立て、それを実践できる。				3		
	分野別の	分野別の専		/\ m\	,1計測制制 1	計測の定義と種類を説明できる。				4		
	門工学	- 13	機械系分野			測定誤差の原因と種類、精度と不確かさを説明できる。				4		
			D工 機械系分野 【実験・実 習能力】			実験・実習の目標と心構えを理解し、実践できる。				4		
						災害防止と安全確保のためにすべきことを理解し、実践できる。				4		
専門的能力	しつし まご ひりし	カエ				レポートの作成の仕方を理解し、実践できる。				4		
	学実験 習能力	・実			験実習】	加工学実験、機械力学実験、材料学実験、材料力学実験、熱力学 実験、流体力学実験、制御工学実験などを行い、実験の準備、実 験装置の操作、実験結果の整理と考察ができる。				4		
						実験の内容をレポートにまとめることができ、口頭でも説明できる。						
	汎用的拮	用的技能 汎用的		技能	汎用的技能	課題の解決は直感や常識にとらわれず、論理的な手順で考えなければならないことを知っている。			3			
分野横断的			〕 態度・志向)性			リーダーがとるべき行動や役割をあげることができる。			3			
能力		志向				適切な方向性に沿った協調行動を促すことができる。				3		
	性(人間	態度・志向 性(人間力)				リーダーシップを発揮する(させる)ためには情報収集やチーム内での相談が必要であることを知っている				3		
評価割合												
	試	験		発	表	相互評価	態度	ポートフォリオ	その他	合計	†	
総合評価割	合 0			0		0	0	100	0	100)	
基礎的能力	0			0		0 0		0 0		0		
専門的能力 0			0			0 0		100 0 0 0		100		
分野横断的能力 0				0								