킽	訓高等專	門学校	開講年度 平成30年度 (2018年度)	授業科目	建設環境工学実験実習Ⅲ		
科目基础	礎情報							
科目番号		0441		科目区分	専門 / 必	修		
授業形態		実験・	実習	単位の種別と単位	位数 履修単位	<u>r</u> : 2		
開設学科		建設環境	竟工学科(2018年度以前入学者)	対象学年 5				
開設期		通年		週時間数	2			
教科書/教	效材	適宜プリ	Jント, テキストなどを準備する。					
担当教員		多川 正	,高橋 直己,柳川 竜一					
到達目	標							
まとめ, 環境・衛	レポート作 生:温暖化	成といった [.]	習した基礎的事項に関する実験実習を第 一連の流れを習得する。 折し, かつ生物による水質浄化メカニス			•		
<u>ルーブ</u>	リック							
			理想的な到達レベルの目安	標準的な到達レク	ベルの目安	未到達レベルの目安		
評価項目1				層流と乱流について説明できる。		層流と乱流について説明できない。		
評価項目	2			開水路の等流(平均流速公式、限 界水深、等流水深)について理解 している。		アル深、等流水深)について説明できない。		
評価項目	3			ベルヌーイの定5 ュリーメータな。 る。	理の応用(ベンチ ど) の計算ができ	ベルヌーイの定理の応用(ベン・ ュリーメータなど) の計算がで ない。		
評価項目	4			摩擦抵抗による抗 式について説明	損失水頭の実用公 できる。	な 摩擦抵抗による損失水頭の実用な式について説明できない。		
評価項目	5		水質指標について測定原理を理解 し、実験結果の検証ができる。	水質指標を理解し	している。	水質指標を説明できない。		
評価項目	6		水域生態系と水質変換過程(自浄 作用)を理解し、計算ができる。	水域生態系と水質作用)を理解し		・ 水域生態系と水質変換過程(自) 作用)を説明できない。		
評価項目	7		地球温暖化を理解し、二酸化炭素 、メタンが与える影響について説 明できる。	地球温暖化を理解している。		地球温暖化を説明できない。		
評価項目	8		浄水の単位操作(凝集・沈澱凝集 等)を理解し、薬品使用量、廃棄 物汚泥発生量の計算ができる。	浄水の単位操作 等)を理解してい	(凝集・沈澱凝集 ハる。	浄水の単位操作(凝集・沈澱凝生等)を説明できない。		
評価項目	9		廃棄物の減量化・再資源化を理解 し、有機物汚染源からメタンガス 回収量が化学量論的に計算ができ る。	廃棄物の減量化 している。	・再資源化を理解	廃棄物の減量化・再資源化を説 できない。		
学科の	 到達目標 []]	百日との問	·					
			ゼバボ ・教育到達度目標 C-2					
			· 教育到建度日保 C-2					
教育方法 概要	広寺	ーク収集	: 主として3・4年生で学習した基礎的事 集と整理・結果とまとめ,レポート作成 衛生:温暖化の現況を分析し,かつ生物	といった一連の流	れを習得する。	·		
授業の進	め方・方法	をよく。 をよく。 する。 1 (1) れ	実験内容全般について簡単に概要説明を 読み自分たちで積極的に取り組むように 実験の他に演習問題やプレゼンテーショ 庁事等により実験の日程を変更する場合 卵川・高橋・岡崎担当の水理実験および が終了後、水理実験と環境・衛生実験と 1 つの実験トピックについて、3 回の授	でする。得られた結 ロンを課す。実験に ないには適宜連絡する。 で多川・中島担当の で交替する。最後	果はそのつどレア 取り組む真摯な姿。 環境・衛生実験を に環境・衛生実験	ドートで提出させる。必要や事情に反 姿勢やレポート提出期限の遵守を重 を 2 班ずつ同時並行に進行させ、2 元 余の実験結果発表会を行う。		
注意点		上記1,	として実験には毎回出席すること。2.レ 2に不足がある場合,単位認定すること 検が実施できません。					
授業計	–				Γ			
		週	授業内容		週ごとの到達目	標		
		1週	ガイダンス、成績評価					
前期		2週	安全教育、機器・実験施設の使用方法	<u> </u>	試薬,分析機器,ガラス器具などの安全な使用方法を 体得する。			
		3週	層流と乱流の実験 1回目		分析結果と理論値, 文献値との比較, 考察ができる。			
		3週 4週	層流と乱流の実験 2回目		対析結果と理論値、文献値との比較、考察ができる。 層流と乱流について説明できる。			
	1stQ	5週	層流と乱流の実験 3回目			v・Cmu41 C C め。		
		6週	直角三角ぜきの流量検定実験 1回目		 分析結果と理論値,文献値との比較,考察ができる			
					別が指来と理論で、文献でどの比較、考察ができる開水路の等流(平均流速公式、限界水深、等流水深			
		7週	直角三角ぜきの流量検定実験 2回目)について理解している。			
	1	S语	直角三角げきの流量給定宝輪 3回日					

8週

9週

10週

11週

12週

2ndQ

直角三角ぜきの流量検定実験 3回目

管路の摩擦損失係数 1回目

ベンチュリメータによる流量測定実験 1回目

ベンチュリメータによる流量測定実験 2回目

ベンチュリメータによる流量測定実験 3回目

分析結果と理論値,文献値との比較,考察ができる。 ベルヌーイの定理の応用(ベンチュリーメータなど) の計算ができる。

分析結果と理論値,文献値との比較,考察ができる。

		13週	管路(の摩擦指生体数	数 2同日		摩擦抵抗による損	 美火水頭の実				
			1				る。					
		14週	管路の摩擦損失係数 3回目 水質調査 1回目				分析は甲と理論値	サが値と	かと乾 老	 宛ができる		
		16週		洞 <u>色 101日</u> 調査 201目				分析結果と理論値,文献値との比較,考察ができる。 水質指標を理解している。				
		1週		周査 200 周査 30目		小臭店は と 生/	小貝田伝で生併している。					
後期 _	-	2週		<u> </u>	の測定 1回目 分析結果と理論値,文献値との					 察ができる。		
		3週		中のCO2濃度の	· · · · · · · · · · · · · · · · · · ·							
		4週	大気で	中のCO2濃度の	の測定 3回目							
	3rdQ	5週	浄水操作(凝集・沈殿) 1回目				分析結果と理論値	分析結果と理論値,文献値との比較,考察ができる。				
		6週	浄水技	操作(凝集・淡	沈殿) 2回目					理解している		
		7週	浄水技	操作(凝集・渋	沈殿)3回目							
		8週		物処理実験 1回			分析結果と理論値、文献値との比較、考察ができる。					
		9週	+	聚棄物処理実験 2回目			廃棄物の減量化・再資源化を理解している。					
		10週		棄物処理実験3回目								
				実験結果発表会 1回目 準備								
4	4thQ			実験結果発表会 2回目 準備			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	125 - 5				
		13週		実験結果発表会 3回目 発表会 実験内容を分かりやすくプレ								
		14週 15週	夫颗	実験結果発表会 4回目 発表会 実験内容を分かりやすくプ				ハッタくノレ	バビンテージ	ョノじさる。_		
		15週	+									
エデルコ	フカリキ		マ学習	内容と到達								
<u>モナルコ.</u> 分類	<i>, ,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-ユ <i>ノム0</i> 分野	ノナ白	学習内容	:ロ1宗 学習内容の到達目機	<u> </u>			到達レベル	授 素組		
/J 75R		773		THIS						以来趋		
					理整頓)を持ってい	る。			4			
					事故への対処の方法(薬品の付着、引火、火傷、切り傷)を理解し		哥)を理解し	4				
					、対応ができる。 測定と測定値の取り扱いができる。		4					
				1					4			
	는 ##1/1 #	5 //- 224-	₽E◆	化学実験	有効数字の概念・測定器具の精度が説明できる。 レポート作成の手順を理解し、レポートを作成できる。			4	+			
	自然科学	化学家	に 神火		ガラス器具の取り扱いができる。			4				
					基本的な実験器具に関して、目的に応じて選択し正しく使うこと			4				
					ができる。				ļ ·			
				1	試薬の調製ができる。				4			
				1	代表的な気体発生の実験ができる。				4			
				-	代表的な無機化学反応により沈殿を作り、ろ過ができる。				4			
					物理、化学、情報、工学における基礎的な原理や現象を明らかに するための実験手法、実験手順について説明できる。			4				
基礎的能力					実験装置や測定器の操作、及び実験器具・試薬・材料の正しい取 扱を身に付け、安全に実験できる。				4			
					実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考察の論理性に配慮して実践できる。				4			
					実験テーマの目的に沿って実験・測定結果の妥当性など実験デー				4			
		工学	実験技	工学実験技	タについて論理的な考察ができる。 実験ノートや実験レポートの記載方法に沿ってレポート作成を実							
	工学基礎		理測定 デー 里、考	. 何(合種測定 方法、デー	践できる。				4			
		タ処は 察方法	¥、考 去)	方法、データ処理、考察方法)	実験データを適切なグラフや図、表など用いて表現できる。				4	_		
			,		実験の考察などに必要な文献、参考資料などを収集できる。			4				
					実験・実習を安全性や禁止事項など配慮して実践できる。			4				
					個人・複数名での実験・実習であっても役割を意識して主体的に 取り組むことができる。				4			
					共同実験における基本的ルールを把握し、実践できる。			0	4			
					レポートを期限内に提出できるように計画を立て、それを実践で			4				
専門的能力				建設系【実験実習】	きる。 層流・乱流を観測してレイノルズ数を算出できる。			4				
	ᄼᄧᄝᄱᄼ	Ţ Ţ Ţ	2分配		各種の流量測定の方法を理解し、器具を使って実験できる。			4				
	学実験· 習能力	/工 建設 / 実 【実際	建設系分野		常流・射流・跳水に関する実験について理解し、実験ができる。				4			
	習能力	習能力	ל)		DO、BODに関する実験について理解し、実験ができる。			4				
					pHに関する実験について理解し、実験ができる。			4				
評価割合												
	試馬	— <u>—</u>	発	 表	相互評価	態度	ポートフォリオ	その他	合	i†		
総合評価割	合 0		0		0	0	0	0	0			
基礎的能力	0		0		0	0	0	0	0			
専門的能力	0		0		0	0	0	0	0			
分野横断的	能力 0		0		0	0	0	0	0			