	川高等専	 門学校	開講年度 令和03年度 (2		授	 業科目	情報工学概論							
科目基礎		1 3 3 12 1	12.12.12.12.12.12.12.12.12.12.12.12.12.1		, ,,,,	-131 1	113112 3 19901110							
科目番号	LIDTK	7011		科目区分		専門 / 選								
授業形態		講義		単位の種別と単位	台米 5	学修単位								
開設学科			通信工学専攻(2023年度以前入学者	単位の権別と単位数 対象学年		子形字位: Z 専1								
開設期) 前期		週時間数		2								
教科書/教	材	教科書: VHDLに イジタル	仲野 巧著 「VHDLによるマイクロフ よるディジタル電子回路設計」 森北 回路設計の基礎」理数工学社	2.360										
担当教員 月本 功 日本 中央 日本 中央 日本 中央 日本														
2.VHDLの 3.組合せ回 4.順序回路 5.VHDLで 6.シミュし 7.簡単なり	十の特徴を知り 対法と記述 可路の動作を いるの動作の記 で論理回路を シーションで 大態遷移回四 大態遷移回四	▽動作を確認	。 。 論理回路を設計できる。											
ルーブリック														
			理想的な到達レベルの目安	標準的な到達レ			未到達レベルの目安							
	D特徴を知っ		HDL設計の特徴を説明できる。	HDL設計の特徴	を知って	こいる。	HDL設計の特徴を知らない。							
VHDLの文 きる。	法と記述に	ついて説明	で VHDLの文法と記述を十分に説明できる。	VHDLの文法と記述を説明できる。			VHDLの文法と記述を説明できない。							
組合せ回路	各の動作を認	说明できる。	VHDLで設計した組合せ回路の動作 を説明できる。	組合せ回路の動	作を説明	できる。	組合せ回路の動作を説明できない。							
		月ができる。	VHDLで設計した順序回路の動作を 説明できる。	順序回路の動作	回路の動作を説明できる。		順序回路の動作を説明できない。							
	倫理回路を記 設計できる。	記述して,論	YHDLによる回路設計ができる。	VHDLによる回路	各記述が	できる。	VHDLによる回路記述ができない。							
シミュレ- きる。	ーションで重	协作を確認で	シミュレーションによる動作検証 ができる。	シミュレーションができる。		· る。	シミュレーションができない。							
簡単な状態作を確認で		を設計して動	簡単な状態遷移回路を設計し、シ ミュレーションによる動作検証 , 問題解決ができる。	簡単な状態遷移回路を設計し,シ ミュレーションできる。		計し, シ	が 簡単な状態遷移回路を設計し,シミュレーションできない。							
学科の至	J達目標項	目との関	係											
教育方法	· · · · · · · · · · · · · · · · · · ·													
WHDLを用いた論理回路のトップダウン設計手法を習得する。この科目は企業での電子回路応用製品の設計・開発していた教員が、その経験を活かし、VHDLによるディジタル回路設計手法等について講義形式で授業を行うもの。 (1) 論理回路設計に必要な VHDL の文法を学習する。 (2) 論理回路を VHDL で記述できる。 (3) 論理回路を設計しテストベンチを作成してシミュレーションを行い、動作の確認ができる。 授業の進め方・方法 教科書および自作資料に基づいて講義をした後、実習を行う。実習では、VHDLでディジタル回路およびテストへ記述した後、ModelSimを用いたシミュレーションにより動作検証を行い、レポートとして提出する。 学修単位なので予習復習を欠かさないこと。課題レポートは適切な図表に加え、本文中で説明を加えること。オフィスアワーは、火曜日の放課後(16:00~17:00)です。														
授業の属	属性・履修	を上の区分												
□ アクテ	イブラーニ	ング	□ ICT 利用	□ 遠隔授業対応			□ 実務経験のある教員による授業							
														
1又未引性	<u>4</u>	週	哲学内 容		油ブレ	の到達口								
前期	1stQ	1週	授業内容 HDLによる設計の概要	週ごとの到達目標 HDL設計の特徴を										
		2週												
		3週	横造記述と動作記述		1	の文法と言	について説明できる。							
		4週	構造記述と動作記述 VHDLシミュレーション		D2:3 テストベンチを記述し、シミュレーションがでる									
		5週	VHDLによる組合せ回路設計		Nビット	アスト・ヘンテ と記述し、フェエレーフョンガ くどる。 Nビット加算回路を理解する。 D2:3								
		6週	VHDLによる組合せ回路設計		Nビッ 動作検	.3 シット加算回路を設計し, シミュレーションによる F検証ができる。 3, E4:2								
		7週	VHDLによる組合せ回路設計			 デコーダ回路, パリティ回路を理解する。 D2:3								
		8週	VHDLによる組合せ回路設計		デコー	デコーダ回路,パリティ回路を設計し,シミュレーションによる動作検証ができる。 :2:3, E4:2								
	2ndQ	9週	VHDLによる状態遷移回路設計		ステートマシンを用いた簡単な自動販売機の設計方法 を理解する。 D2:3									
	1	1			D2:3									

	10週	VHDLによる状態遷移回路設計			ステートマシンを用いた簡単な自動販売機の設計し , シミュレーションによる動作検証ができる。 E2:3, E4:2						
	11週	VHD	VHDLによる状態遷移回路設計			ROMを用いた簡単な自動販売機の設計方法を理解する。D2:3					
	12週	VHD	Lによる状態選	遷移回路設計		ROMを用いた簡単な自動販売機の設計し,シミュレーションによる動作検証ができる。 E2:3, E4:2					
	13週	VHD	Lによる状態選	遷移回路設計	ステートマシンを用いた応用回路(シリアル送信回路)記述方法を理解する。 D2:3						
	14週	VHD	/HDLによる状態遷移回路設計			ステートマシンを用いたシリアル送信回路を設計できる。 E2:3, E4:2					
	15週	VHD	Lによる状態と	遷移回路設計		設計したシリアル送信回路をシミュレーションし, 動作検証ができる。 E2:3, E4:2					
	16週	前期	期末試験								
モデルコアカリ	キュラムの)学習	内容と到達	目標							
分類	分類 分野			学習内容 学習内容の到達目標			到達レベル 授業週				
評価割合											
		定	定期試験		レポート		合計				
総合評価割合	•	40	40		60		100				
基礎的能力		0	0		0		0				
専門的能力		40)		60		100				
分野横断的能力		0	0		0		0				