新居	浜工業高	7	交 │ 開講年度 │令和04年度 (2	ノロノノ年度)	授業科目	電磁気学 1				
科目基础		13 13 13 1	13213 132 13183 132	, , , ,	***************************************					
<u>117口坐1</u> 科目番号		121303		科目区分	専門 / 必修	<u>\$</u>				
77日田 <u>7</u> 授業形態		講義	<u>'</u>	単位の種別と単位						
開設学科		電気情報		対象学年	3					
開設期		通年	X上于11-1	週時間数	2					
四0270 教科書/教	₹1±±		『学(第2版・新装版)安達三郎他・森井	1. — 1						
<u> </u>		加藤茂	(于 (16四/灰、 次日 电 X I	似义(一 (利 农)()	八貝茶雌吧 林北山/灰				
		加脉 人								
到達目										
2. ガウス 3. 電位や 4. 静電容	くの定理等に P電位差を計 S量や蓄えら	こより、電界 け算できるこ られているエ	動く力を計算できること。 を計算できること。 と。 ネルギーを計算できること。 電束密度、電界、電位差等を計算できる	ること 。						
ルーブリ	リック									
<i>,,</i> ,			理想的な到達レベルの目安	標準的な到達レベ		未到達レベルの目安				
			クーロンの法則に関する複雑な問	クーロンの法則に		クーロンの法則の問題の計算がで				
評価項目	1		題を解くことができる	題を解くことがで		きない				
=====================================	2		電界に関する複雑な問題を解くこ	電界に関する単純	は問題を解くこ	東田の計算が <u>できれ</u> い				
評価項目	2		とができる	とができる		電界の計算ができない				
評価項目	3		電位や電位差に関する複雑な問題	電位や電位差に関		 電位や電位差の計算ができない				
- / IM-XII	-		を解くことができる	を解くことができ						
評価項目	4		静電容量や蓄えられているエネル ギーに関する複雑な問題を解くこ	静電容量や蓄えら ギーに関する単純		静電容量や蓄えられているエネル				
1.111111111111111111111111111111111111	7		とができる	とができる	うらころは、日本ナノ(ギーの計算ができない				
			異なる誘電体を含む場合の、電束	異なる誘電体を含	む場合の、電束	異なる誘電体を含む場合の、電束				
評価項目	5		密度、電界、電位差等の複雑な問	密度、電界、電位	差等の単純な問	密度、電界、電位差等の計算がで				
			題を解くことができる	題を解くことがで	<u>:さる</u>	きない				
		項目との関	到徐							
専門知識	(B)									
教育方》	法等									
			電荷によって生ずる電界や電束を、電気力線や電束を表す仮想の線で表現し、ガウスの定理を用いて計算する。また、 力で定義される電界とエネルギーで定義される電位を、微分・積分を用いて相互に関係づけ、導体を含む系の電界と電							
評 重		力で定義	くって 生する 電介 で 電米 を、 電	電化を表り仮想の総電位を、微分・積分	泉で表現し、ガウス 全用いて相互に	スの定理を用いて計算する。また、 関係づけ、導体を含む系の電界と電				
概要		力で定義	くりてエッる电がでも来る、电気が続い される電界とエネルギーで定義される コンデンサの静電容量とこれに蓄えら 現るを明らかにする	でである。他はのでは、 電位を、微分・積かれるエネルギーを導	家で表現し、ガウス 分を用いて相互に 算出する。誘電体の	スの定理を用いて計算する。また、 関係づけ、導体を含む系の電界と電 D分極と、静電容量、誘電率・比誘				
	4 + + + + + + + + + + + + + + + + + + +	位から、電率の関	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。	れるエネルギーを導 	泉で表現し、ガウス 分を用いて相互に 算出する。誘電体の	スの定理を用いて計算する。また、 関係づけ、導体を含む系の電界と電 の分極と、静電容量、誘電率・比誘				
概要 授業の進	め方・方法	位から、 電率の関 板書を中	コンテンサの静電容量とこれに蓄えら 排係を明らかにする。 P心に行う。小テスト、課題の提出を求	れるエネルギーを導 	算出する。誘電体の 	の分極と、静電容量、誘電率・比誘				
	め方・方法	位から、 電率の関 板書を中	コンテンサの静電容量とこれに蓄えら 引係を明らかにする。 中心に行う。小テスト、課題の提出を求 学は電気工学の基礎となる原理や法則を	れるエネルギーを導 なめる。 まとめたものです。	算出する。誘電体の 	の分極と、静電容量、誘電率・比誘 				
授業の進	め方・方法	位から、電率の限 を事を中 電磁気等	コンテンサの静電容量とこれに蓄えら 情係を明らかにする。 中心に行う。小テスト、課題の提出を求 学は電気工学の基礎となる原理や法則を こも身につけておく必要があります。特 目身の言葉でその説明ができるように心	がれるエネルギーを導 がある。 にまとめたものです。 に、電界、電位、前 がけて下さい。	事出する。誘電体の したがって、その 争電容量などの物理	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて				
授業の進	め方・方法	位から、電率の限 電率の限 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	コンテンサの静電容量とこれに蓄えら 開係を明らかにする。 中心に行う。小テスト、課題の提出を求 学は電気工学の基礎となる原理や法則を も身につけておく必要があります。特 引身の言葉でその説明ができるように心 引は4年の「電磁気学 2」に続き、また、	れるエネルギーを導 める。 まとめたものです。 に、電界、電位、 が、すで下さい。 5年の「電力工学	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要				
	め方・方法	位から、関連を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を	コンテンサの静電容量とこれに蓄えら 引係を明らかにする。 中心に行う。小テスト、課題の提出を求 とは電気工学の基礎となる原理や法則を も身につけておく必要があります。特 目の言葉でその説明ができるように、 目は4年の「電磁気学2」に続き、また、 また、多くの大学、専攻科の電気系学科	れるエネルキーを導 める。 まとめたものです。 に、電界、電位、 がけて下さい。 5年の「電力工学 等への進学に際し、	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要				
授業の進 注意点		位から、関連を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を	コンテンサの静電容量とこれに蓄えら 開係を明らかにする。 中心に行う。小テスト、課題の提出を求 学は電気工学の基礎となる原理や法則を も身につけておく必要があります。特 引身の言葉でその説明ができるように心 引は4年の「電磁気学 2」に続き、また、	れるエネルキーを導 める。 まとめたものです。 に、電界、電位、 がけて下さい。 5年の「電力工学 等への進学に際し、	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要				
授業の進 注意点 本科目(の区分	位かの限を書を気が、このでは、このでは、このでは、このでは、このでは、このでは、このでは、このでは	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 は電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自身の言葉でその説明ができるように心 間は4年の「電磁気学 2」に続き、また、 に、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技	れるエネルギーを導送める。 まとめたものです。 に、電界、電位、前がけて下さい。 、5年の「電力工学 等への進学に際し、 術者関連科目です。	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要				
授業の進注意点 注意点 本科目(の区分	位かの限している。 仮名 を 中電 を 見います を 見います を 見います を 見います と こで 科目 ままます ままます ままます ままます ままます ままます ままます ま	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 学は電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自身の言葉でその説明ができるようにか は4年の「電磁気学 2」に続き、また、 にた、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技	れるエネルギーを導送める。 まとめたものです。 に、電界、電位、前がけて下さい。 、5年の「電力工学 等への進学に際し、 術者関連科目です。	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要				
授業の進 注意点 本科目(Webシラ 本科目は	の区分 バスと本校 履修要覧(p	位かの限・	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を にも身につけておく必要があります。特 自身の言葉でその説明ができるように心 は4年の「電磁気学2」に続き、また、 たた、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。	れるエネルギーを導送める。 まとめたものです。 に、電界、電位、前がけて下さい。 、5年の「電力工学 等への進学に際し、 術者関連科目です。	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要				
授業の進 注意点 本科目は Webシラ 本科目は 授業の原	の区分 がスと本校 履修要覧(p 属性・履	位から、電響を中電磁気を受ける。 一個 では できまる できまる できまる できまる できまる できまる できまる できまる	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自は4年の「電磁気学2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。	がは、大学の世界では、一名では、一名では、一名では、一名では、一名では、一名では、一名では、一名	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 理量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
受業の進 主意点 本科目は Webシラ 本科目は 授業の原	の区分 バスと本校 履修要覧(p	位から、電響を中電磁気を受ける。 一個 では できまる できまる できまる できまる できまる できまる できまる できまる	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を にも身につけておく必要があります。特 自身の言葉でその説明ができるように心 は4年の「電磁気学2」に続き、また、 たた、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。	れるエネルギーを導送める。 まとめたものです。 に、電界、電位、前がけて下さい。 、5年の「電力工学 等への進学に際し、 術者関連科目です。	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要				
受業の進 主意点 本科目は Webシラ 本科目は 授業の原	の区分 がスと本校 履修要覧(p 属性・履	位から、電響を中電磁気を受ける。 一個 では できまる できまる できまる できまる できまる できまる できまる できまる	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自は4年の「電磁気学2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。	がは、大学の世界では、一名では、一名では、一名では、一名では、一名では、一名では、一名では、一名	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 理量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー:	位から、電響を中電磁気を受ける。 一個 では できまる できまる できまる できまる できまる できまる できまる できまる	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自は4年の「電磁気学2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。	がは、大学の世界では、一名では、一名では、一名では、一名では、一名では、一名では、一名では、一名	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 理量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー:	位から、電響を中電がある。 板書 を中電がら、こで科を受ける。 では、こでは、こではは、こではは、こではは、こではは、こではは、このでは、こので	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自身の言葉でその説明ができるように心 は4年の「電磁気学2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 」 ICT 利用	がけて下電力工学 (本者関連科目です。) (本者関連科目です。) (本者関連科目です。) (本者関連科目です。) (本者関連科目です。)	算出する。誘電体の したがって、その 動電容量などの物理 B 」では、送電線	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 型量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー:	位かの限している。	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自は4年の「電磁気学2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。)	はある。 はまとめたものです。 にに、電界、さい。 ち年の「電力工学」等への進学に際し、 がけて下で電力工学 等への進学に際し、 がよ者関連科目です。	即出する。誘電体の したがって、その 争電容量などの物理 B」では、送電線 その学力試験にの	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 型量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー:	位取率を中では、 では、 では、 では、 では、 では、 では、 では、 では、 では、	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自は4年の「電磁気学 2」に続き、また、 にた、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 口 ICT 利用	れるエネルキーを導 ある。 まとめたものです。 に、電界、さい。 5年の「電力工学」 等への進学に際し、 術者関連科目です。 3こと。	製出する。誘電体の したがって、その 争電容量などの物理 B」では、送電線 その学力試験には	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 型量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー:	位電を を	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自身の言葉でその説明ができるようにか。 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 「正て利用	れるエネルキーを導 がある。 まとめたものです。 にた、電界、さい。 、5年の「電力工学」 等への進学に際し、 が不者関連科目です。 ること。	見出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験にの 過ごとの到達目標 1	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 型量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー:	位電を を を を を を を を を を を を で 科 を を で 科 を を で 科 を を で 科 を を た の す り の す り の す り り り り し の す り り し し り り り り り り り り り り り り り り り	コンデンサの静電容量とこれに蓄えら 原係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるようにい は4年の「電磁気学 2」に続き、また、 た、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 「ICT 利用 「授業内容 電荷、電荷間の力、クーロンの法則 電界の定義 電気力線による電界の表し方	れるエネルキーを導 ある。 まとめたものです。 にた、はて下で開かれて下でです。 、5年の「電力、学に際し、 、5年の進学に際し、 、6本者関連科目です。 ること。	製出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験にの 週ごとの到達目標 1 1,2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電を を	コンデンサの静電容量とこれに蓄えら 原係を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように心 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 口 ICT 利用 授業内容 電荷、電荷間のカ、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理	れるエネルギーを導送する。 まとめたものです。 にた、電界、さい。 「おけて下で電力工学に際し、 「おの進学に際し、 「本者関連科目です。 ること。	見出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験に(の学力試験に(1,2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー:	位電を を を を を を を を を を を を で 科 を を で 科 を を で 科 を を で 科 を を た の す り の す り の す り り り り し の す り り し し り り り り り り り り り り り り り り り	コンデンサの静電容量とこれに蓄えら 原係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるようにい は4年の「電磁気学 2」に続き、また、 た、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 「ICT 利用 「授業内容 電荷、電荷間の力、クーロンの法則 電界の定義 電気力線による電界の表し方	れるエネルギーを導送する。 まとめたものです。 にた、電界、さい。 「おけて下で電力工学に際し、 「おの進学に際し、 「本者関連科目です。 ること。	製出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験にの 週ごとの到達目標 1 1,2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 を	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるよう。 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 ICT 利用 授業内容 電荷、電荷間のカ、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が円筒状、無限平面状に分布して	れるエネルキーを導	製出する。誘電体の したがって、その 争電容量などの物理 B」では、送電線 その学力試験には 相ごとの到達目標 1 1,2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板 電ど、こで科 電ど、こで科 要記 区 のすり	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように心 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 口 ICT 利用 授業内容 電荷、電荷間の力、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が円筒状、無限平面状に分布して 計算	れるエネルキーを導	見出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験に(の学力試験に(1,2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラ 本科目は 受業の原	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板 電ど、こで科 で で で で で で で で で で で で で で で で で で	コンデンサの静電容量とこれに蓄えら 原を明らかにする。 中心に行う。小テスト、課題の提出を求 は電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように心 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 以目区分では表記が異なるので注意する る「②専門基礎科目」である。 」ICT 利用 授業内容 電荷、電荷間のカ、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が円筒状、無限平面状に分布して 計算 中間試験	れるエネルキーを導	製出する。誘電体の したがって、その 争電容量などの物理 B」では、送電線 その学力試験には 相ごとの到達目標 1 1,2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Vebシラ 本科目は アクラ 受業計「	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板 電ど、こで科 電ど、こで科 要記 区 のすり	コンデンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように心 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 口 ICT 利用 授業内容 電荷、電荷間の力、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が円筒状、無限平面状に分布して 計算	れるエネルキーを導	製出する。誘電体の したがって、その 争電容量などの物理 B」では、送電線 その学力試験には 相ごとの到達目標 1 1,2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラは を料目は アクラ	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板 電ど、こで科 で で で で で で で で で で で で で で で で で で	コンデンサの静電容量とこれに蓄えら 原を明らかにする。 中心に行う。小テスト、課題の提出を求 は電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように心 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 以目区分では表記が異なるので注意する る「②専門基礎科目」である。 」ICT 利用 授業内容 電荷、電荷間のカ、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が円筒状、無限平面状に分布して 計算 中間試験	れるエネルキーを導 ある。 まとめたものです。 にて、電界、さい。 5年の「電力工学」 等への進学に際です。 等への進学目です。 ること。 □ 遠隔授業対応 記計算 こいる場合の電界	見出する。誘電体の したがって、その 争電容量などの物理 B」では、送電線 その学力試験には 11,2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラは で業の原 で業計	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板電ど、こで科 修に	コンテンサの静電容量とこれに蓄えら 関係を明らかにする。 中心に行う。小テスト、課題の提出を求 には電気工学の基礎となる原理や法則を も身につけておく必要があります。特 自は4年の「電磁気学 2」に続き、また、 を、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。	れるエネルキーを導	即出する。誘電体の したがって、その 争電容量などの物理 B」では、送電線 その学力試験には 1,2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は 受業の原 で発計し	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板電ど、こで科 修に かっ を 気し分科。は、 で科 修に かっ を 気し分科。は、 のす を 気し分科。は、 のす タ カ	コンデンサの静電容量とこれに蓄えら 原係を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるようにい は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 「正て利用 「四本のでは表記が異なるので注意する。」 である。 「四本のでは表記が異なるので注意する。」 「四本のでは表記が異なるので注意する。」 「四本のでは表記が異なるので注意する。」 「四本のでは表記が異なるので注意する。」 「のではま記が異なる。」 「のではま記が異なるので注意する。」 「のではないないないないないないないないないないないないないないないないないないない	れるエネルキーを導	リルする。 誘電体の したがって、その 中電容量などの物理 B」では、送電線 その学力試験に 「	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は 受業の原 で発計し	の区分 がスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板 電ど、こで科 修正 で料 で記 で割 で	コンデンサの静電容量とこれに蓄えら 原係を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるよう。また、 ほは4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 「四本の定義」である。 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が下門筒状、無限平面状に分布して 計算 中間試験 試験返却、静電誘導 平行平板導体の電界 誘電体と誘電率(1) 誘電体と誘電率(2)	れるエネルキーを導 ある。 まとめたものです。 にたがけて下電力、 等への進学に際し、 、5年の進学に際し、 、5年の選挙科目です。 ること。 □ 遠隔授業対応 計算 こいる場合の電界	即出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験にの 週ごとの到達目標 1 1,2 2 2 2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は 受業の原 で発計し	の区分 バスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板 電ど、こで科 修正	コンデンサの静電容量とこれに蓄えら 原を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。に 身の言葉でその説明ができるようにい は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 」ICT 利用 授業内容 電荷、電荷間のカ、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が円筒状、無限平面状に分布して 計算 中間試験 試験返却、静電誘導 平行平板導体の電界 誘電体と誘電率(1) 誘電体と誘電率(2) 電東密度と電界の関係	れるエネルキーを導 ある。 まとめたものです。 にがけて下電力、下電力、下でです。 等への進学に際し、 、5年の進学に際し、 、5年の進学科目です。 ること。 □ 遠隔授業対応 □ 遠隔授業対応	脚する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験に(1,2 2 2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラは で業の原 で業計	の区分 がスと本校 履修要覧(p 属性・履 ティブラー: 画	位電板電ど、こで科 修に のす を 気し分科。は、のす を 気し分科。は、のす り り し り り り り り り り り り り り り り り り り	コンテンサの静電容量とこれに蓄えら 原を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように心 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 以目区分では表記が異なるので注意する る「②専門基礎科目」である。 日にて利用 授業内容 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が可筒状、無限平面状に分布して 計算 中間試験 試験返却、静電誘導 平行平板導体の電界 誘電体と誘電率(1) 誘電体と誘電率(2) 電東密度と電界の関係 電東密度とでりスの定理	れるエネルキーを導 ある。 まとめたものです。 にがけて下電力、下電力、下でです。 等への進学に際し、 、5年の進学に際し、 、5年の進学科目です。 ること。 □ 遠隔授業対応 □ 遠隔授業対応	即出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験にの 週ごとの到達目標 1 1,2 2 2 2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
受業の進 主意点 本科目は Webシラは で業の原 で業計	の区分 がスと本校 履修要覧(p 属性・履 ティブラー: 画	位電 板 電ど、こで科 修に のす を	コンテンサの静電容量とこれに蓄えら 原を明らかにする。 中心に行う。小テスト、課題の提出を求 は電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように心 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 以目区分では表記が異なるので注意する る「②専門基礎科目」である。 」ICT 利用 授業内容 電荷、電荷間のカ、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が円筒状、無限平面状に分布して 計算 中間試験 試験返却、静電誘導 平行平板導体の電界 誘電体と誘電率(1) 誘電体と誘電率(2) 電東密度と電界の関係 電東密度とガウスの定理 前期の復習	れるエネルキーを導 ある。 まとめたものです。 にがけて下電力、下電力、下でです。 等への進学に際し、 、5年の進学に際し、 、5年の進学科目です。 ること。 □ 遠隔授業対応 □ 遠隔授業対応	脚する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験に(1,2 2 2 2 2	の分極と、静電容量、誘電率・比誘 の内容は電気工学を学ぶ者として、 里量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本 □ 実務経験のある教員による授				
授業の進 注意点 本科目は Webシラ 本科目は 授業の原	の区分 がスと本校 履修要覧(p 属性・履 ティブラー: 画	では、こで科 では、のず ケ では、のず ケ では、こで科 では、のず ケ では、こで科 では、のず ケ では、	コンテンサの静電容量とこれに蓄えら 原体を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身の言葉でその説明ができようます。特別 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 一 ICT 利用 授業内容 電荷、電荷間の力、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が内筒状、無限平面状に分布して 計算 中間試験 試験返却、静電誘導 平行平板導体の電界 誘電体と誘電率(1) 誘電体と誘電率(2) 電東密度と電界の関係 電東密度と電界の関係 電東密度と間別の定理 前期の復習 期末試験	れるエネルキーを導 ある。 まとめたものです。 にがけて下電力、下電力、下でです。 等への進学に際し、 、5年の進学に際し、 、5年の進学科目です。 ること。 □ 遠隔授業対応 □ 遠隔授業対応	脚する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験に(1,2 2 2 2 2	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 型量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
授業の進 注意点 本科目は Webシラは アクラ 授業計	の区分 がスと本校 履修要覧(p 属性・履 ティブラー: 画	では ででは ででは 	コンテンサの静電容量とこれに蓄えら 原体を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身につけておく必要があります。特 身の言葉でその説明ができるように、 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 ・	れるエネルキーを導 ある。 まためたものです。 にたいて下に電力にです。 等への進学にです。 等への進学科目です。 ること。 □ 遠隔授業対応 計算 こと。 □ はいる場合の電界	製出する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験には 11,2 2 2 2 2 2 2 2 2 2	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 型量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				
授業の進 注意点 本科目は Webシラは アクラ 授業計	の区分 がスと本校 履修要覧(p 属性・履 ティブラー: 画	では、こで科 では、のずりかでは、では、のでは、では、のでは、では、では、では、では、では、では、では、では、では、では、では、では、で	コンテンサの静電容量とこれに蓄えら 原体を明らかにする。 中心に行う。小テスト、課題の提出を求 に電気工学の基礎となる原理や法則を も身の言葉でその説明ができようます。特別 は4年の「電磁気学 2」に続き、また、 また、多くの大学、専攻科の電気系学科 無線従事者・電気工事士・電気主任技 科目区分では表記が異なるので注意する る「②専門基礎科目」である。 一 ICT 利用 授業内容 電荷、電荷間の力、クーロンの法則 電界の定義 電気力線による電界の表し方 ガウスの定理 電荷が球状に分布している場合の電界 電荷が内筒状、無限平面状に分布して 計算 中間試験 試験返却、静電誘導 平行平板導体の電界 誘電体と誘電率(1) 誘電体と誘電率(2) 電東密度と電界の関係 電東密度と電界の関係 電東密度と間別の定理 前期の復習 期末試験	れるエネルキーを導 ある。 まためたものです。 にたいて下に電力にです。 等への進学にです。 等への進学科目です。 ること。 □ 遠隔授業対応 計算 こと。 □ はいる場合の電界	脚する。誘電体の したがって、その 静電容量などの物理 B」では、送電線 その学力試験に(1,2 2 2 2 2	の分極と、静電容量、誘電率・比誘の内容は電気工学を学ぶ者として、 理量の意味をしっかりと身につけて の放電現象と静電容量の計算に必要 は電磁気学が課せられています。本				

													
	3近 4近				電位と電位差				3				
					真空の場合の電位、電位差の計算				3				
				誘電体を含む場合の電位、電位差の計算				5					
	7週 中間 8週 静電				電位差と電界の関係、電気影像法				2,3				
					中間試験 静電容量				1,2 4				
		9週			容量とコンデン			4					
	11週 静電 12週 静電 13週 点電		コンラ]ンデンサに蓄えられるエネルギー			4	4					
			静電容量の計算(1)平行板				4	4					
			静電器	静電容量の計算(2)同心球、同心円筒			4	4					
			点電荷	苛による電位 <i>0</i>	D重ね合わせ	3							
			围	応用間	問題								
		15ì	.5週 期		期末試験								
		16ì	围	試験	険返却と総まとめ								
モデルコス	アカリキ	-그 ⁻	ラムの	学習	内容と到達	目標							
分類			分野		学習内容	学習内容の到達	 目標			到達レベ	ル 授業週		
											前1,前2,前		
基礎的能力	分野別の専電気		物理		電気	電場・電位について説明できる。			4	3,前8,前 9,後3,後 4,後5,後 6,後13			
						クーロンの法則が説明できる。			4	前1,前2,前 3,前8,前9			
						クーロンの法則から、点電荷の間にはたらく静電気力を求めるこ とができる。				4	前1,前2,前 3,前8,前 9,後7		
						電荷及びクーロンの法則を説明でき、点電荷に働く力等を計算できる。				4	前1,前2,前 3,前5,前 6,前7,前 9,後1,後2		
			専 電気・電子 系分野			電界、電位、電気力線、電束を説明でき、これらを用いた計算ができる。				4	前1,前2,前 3,前5,前 6,前7,前 8,前9,前 10,前11,前 12,前13,後 1,後2		
						ガウスの法則を説明でき、電界の計算に用いることができる。				4	前4,前5,前 6,前7,前 9,前10,前 11,前12,前 13,後1,後 2,後7		
専門的能力					電磁気	導体の性質を説明でき、導体表面の電荷密度や電界などを計算で きる。				4	前5,前6,前7,前8,前9,前10,前11,前12,前13,後1,後2		
						誘電体と分極及び電束密度を説明できる。				4	前9,前 10,前11,前 12,前13,後 1,後2		
						静電容量を説明でき、平行平板コンデンサ等の静電容量を計算で きる。				4	前9,前 10,前11,前 12,前13,後 1,後6,後 8,後9,後 10,後11,後		
						コンデンサの直列接続、並列接続を説明し、その合成静電容量を計算できる。				4	後8,後9,後 10,後11,後 12		
						静電エネルギーを説明できる。				4	後9,後 10,後11,後 12		
評価割合													
	≣ ₁ ⊞	净		発	— <u>—</u> 表	相互評価	態度	ポートフォリオ	. 小テスト 提出	・課題			
		試験		_									
総合評価割合				0		0	0	0	30		.00		
	基礎的能力 0		0			0	0	0	0	C			
専門的能力	70		0			0	0	0	30		.00		
分野横断的能力 0			0		0	0	0	0	C				