新居	 浜工業高	等専門学	校 開講年度 平成30年度 (2018年度)	授業科目				
科目基础				,					
科目番号		14052	2	科目区分	専門 / 選抜				
授業形態		講義		単位の種別と単位					
開設学科		生物応用	用化学科	対象学年	5				
開設期		前期		週時間数	2				
教科書/教	材	工学の	ための無機化学 山下仁大 他著 (サ	ナンエンス社)、配布	プリント				
担当教員		中山 享							
到達目標	票								
2.ガラス(3.セメン 4.腐食ラミ 6.一次電	トの原料構 防食とは何 ックスの構	び特性が理 成と製造工 か説明でき 造および種 池、燃料電	解できる。 程を理解できる。 る。 類と特性や用途が系統付けて理解できる 地の種類と原理を理解できる。	5.					
ルーブリ									
,,,,,,			理想的な到達レベルの目安	標準的な到達レベ	 ルの目安	未到達レベルの目安			
評価項目:	1		3 成分系の状態図が読め、その内容を説明できる。	3 成分系の状態図が読める。		3 成分系の状態図が読めない			
評価項目	2		ガラスの構造および特性が理解でき、その内容を説明できる。	ガラスの構造および特性が理解できる。		ガラスの構造および特性が理解できない。			
評価項目:	3		セメントの原料構成と製造工程を 理解し、その内容を説明できる。	セメントの原料構, 理解できる。	成と製造工程を	セメントの原料構成と製造工程を 理解できるない。			
評価項目。	4		腐食・防食とは何か理解でき、その内容を説明できる。	腐食・防食とは何		腐食・防食とは何か説明できるない。			
評価項目!	5		セラミックスの構造および種 類と特性や用途が系統付けて 理解し、その内容を説明できる。	セラミックスの構 特性や用途が系統 る。		セラミックスの構造および種類と 特性や用途が系統付けて理解でき ない。			
評価項目(6		一次電池、二次電池、燃料電 池の種類と原理を理解し、その内 容を説明できる。	一次電池、二次電 種類と原理を理解	池、燃料電池の できる。	一次電池、二次電池、燃料電 池の種類と原理を理解できない。			
評価項目	7		水素吸蔵材料が理解でき、その内 容を説明できる。	水素吸蔵材料が理解できる。		水素吸蔵材料が理解できない。			
学科の発	到達目標:	項目との	関係						
JABEE B	-4 (D)								
専門知識									
教育方法	左寺	4mr +//// + + + 1	以と理控とのほわりに手上もやまわがっ	- 無機ル学の仏主的	产業八服売もフ -	ガニフーセント 一両池 小手収益			
概要		材料な	と環境との係わりに重点をおきながら、無機化学の代表的産業分野であるガラス、セメント、電池、水素吸蔵 に加え、最近注目を浴びているファインセラミックスについて学ぶ。また、3 成分系状態図の読み方と腐食・防 してもらう。						
授業及び 授業の進め方・方法 環境と無			でもファイストで進める。 機機能化学の係わりについても勉強してもらうため、第4、6、10、11、12、13、14 週では環境に触れた内容。 - みます。 4 年生で購入した「工学のための無機化学」(参考書)は、毎回授業に持って来て下さい。						
注意点			までに学習してきた無機化学の内容をベースに、ガラス、セメント、セラミックス、電池などの業界の新しい 込みながら授業を進めていきます。						
 本科目の	カマム	FIX U 盖	プグルがながら対象を定めているよう。						
授業計画	<u> </u>	\m	157.114. 1. 679	l se					
		週	授業内容		週ごとの到達目標				
前期		<u>1週</u> 2週	3成分系状態図の読み方について ガラフ (1): 基礎と性質 p.56	57 58 50 2					
		3週	ガラス(1): 基礎と性質 p.56、 ガラス(2): 製造技術 p.132、1						
		4週	ガラス (2): 製造技術 p.132、 ガラス (3): 応用製品 p.172、1		2				
	1stQ	5週	セメント(1): 基礎と性質 p.13		3				
		6週	セメント(2): 製造技術と応用製i		3				
		7週	腐食防食		4				
		8週	中間試験		1,2,3,4				
		9週	答案返却および解答説明	5					
		10週	セラミックス (1): 基礎と性質 152、153、156、157						
		11週	セラミックス (2): 構造材料 p.: 164、165	5	5				
	2ndQ	12週	セラミックス (3): 機能材料 (1) 159、160、161	, ,	5				
		13週	セラミックス(4): 機能材料(2)		5				
		14週	電池(1): 1次電池と2次電池		6				
		15週	電池(2): 燃料電池、水素吸蔵材		7				
	<u> </u>	16週	期末試験	5	,6,7				
	<u> </u>		の学習内容と到達目標						
分類		分野	学習内容 学習内容の到達目	標		到達レベル 授業週			

				主量子数、方位量于	子数、磁気量子数に	ついて説明できる	0	4	
				電子殻、電子軌道、電子軌道の形を説明できる。			4		
				パウリの排他原理、軌道のエネルギー準位、フントの規則から電子の配置を示すことができる。				4	
				価電子について理解し、希ガス構造やイオンの生成について説明できる。			4		
				元素の周期律を理解し、典型元素や遷移元素の一般的な性質を説 明できる。			4		
				イオン化エネルギー、電子親和力、電気陰性度について説明できる。			4		
				イオン結合と共有結合について説明できる。			4		
				基本的な化学結合の表し方として、電子配置をルイス構造で示すことができる。			4		
専門的能力 2	分野別の専門工学	化学・生物	無機化学	金属結合の形成について理解できる。			4		
(31 32 3132) F.		系分野		代表的な分子に関して、原子価結合法(VB法)や分子軌道法 (MO法)から共有結合を説明できる。			4		
				電子配置から混成軌道の形成について説明することができる。			4		
				結晶の充填構造・充填率・イオン半径比など基本的な計算ができる。			4		
				配位結合の形成について説明できる。			4		
			1	水素結合について説明できる。			4		
				錯体化学で使用される用語(中心原子、配位子、キレート、配位 数など)を説明できる。			4		
				錯体の命名法の基本を説明できる。			4		
				配位数と構造について説明できる。			4		
				代表的な錯体の性質(色、磁性等)を説明できる。			4		
				代表的な元素の単体と化合物の性質を説明できる。			4		
評価割合									
	試験		養	相互評価	態度	ポートフォリオ	その他	合語	†
総合評価割合	80	C	1	0	0	0	20	10)
基礎的能力	0	C	1	0	0	0	0	0	
専門的能力	80	C		0	0	0	20	10	0
分野横断的能力	7 l0	lc	1	lo	0	0	0	0	