 新居	 浜工業高	 等専門学校	· 開講年度 令和04年度 (2		授	 業科目	材料物性学		
科目基础									
科目番号	~ II J TIA	151502		科目区分		専門 / 必	修		
授業形態		講義		単位の種別と単位	-				
開設学科		環境材料		対象学年		-			
開設期		通年	± 3 1 1	週時間数	5 2				
<u>救科書/教</u>	 対材		シリーズ 量子力学概論 権藤靖夫著	1		-			
担当教員	.,-	當代 光陽	7						
到達目標	=								
2. バンド 3. 導体、 4. 電気伝	構造につい 半導体、絶 導性(金属	て基礎的な説 縁体について 中の自由電子	概念が説明できる。 3明ができる。 基礎的な説明ができる。)について基礎的な説明ができる。 説明ができる。						
ルーブ!	ノック								
			理想的な到達レベルの目安	標準的な到達レ	ベルの目]安	未到達レベルの目安		
評価項目:	1		光の二重性について原理を理解し 、説明できる。	光の二重性について説明できる。			光の二重性について説明できない。		
評価項目2	2		電子、物質波について理論的に説明できる。	電子、物質波になっ	ついて説	胡できる	電子、物質波について説明できない。		
評価項目:	3		原子模型について理論的に説明できる。	原子模型についっ	て説明で	ごきる。	原子模型について説明できない。		
評価項目。	4		波動方程式について理論的に説明できる。	波動方程式につい			波動方程式について説明できない。		
評価項目!			固体物性について基礎となる方程 式を交えて理論的に説明できる。	固体物性につい ⁻ 説明できる。	て具体係	を挙げて	固体物性について具体例を挙げて 説明できない。		
学科の発	到達目標工	項目との関	係						
専門知識	(B)								
教育方法	 去等								
概要		物性工学について	の観点から、主に物質・材料中の電子 学ぶ。種々の機能性材料における機能	の振る舞いについ の発現に関する基	て、そり	って、これ 印識を身に	らの物質・材料の示す性質との関係 つける。		
授業の進	め方・方法	必要に応	る講義形式で授業を進め、レポートに [*] じて確認テストを行う。						
注意点		びつけてき数学、あ	における機能の発現は固体中の電子の 理解を深めて欲しい。 るいは応用数学の素養を必要とし、物 ける基礎となる。						
本科目の		1							
本科目は	覆修要覧(p	.9)に記載する	目区分では表記が異なるので注意する 3「③選択必修科目」である。	こと。					
		<u> 修上の区分</u>		1					
□ アクラ	ティブラーニ	ニング	□ ICT 利用	□ 遠隔授業対応	<u>.</u>		□ 実務経験のある教員による授		
授業計画	画								
		週	授業内容		週ごと	の到達目標	Ę		
		1週	古典物理学から前期量子力学I-身の回]りの材料物性学	1, 2				
			と前期量子力学の概論- 古典物理学から前期量子力学II -黒体が	放射、光電効果、	1, 2				
		3.個	コンプトン効果- 古典物理学から前期量子力学III -ラウ	エとブラッグの	1, 2				
前期		4 注目	X 線回折- 古典物理学から前期量子力学IV -ドブ	ロイ波と電子線	1, 2				
	1stQ	5.個	回折- 古典物理学から前期量子力学V -原子の 原ス様型	の構造、ボーアの	1, 2				
	1		原子模型- 中間試験		,				
		プロ	シュレディンガー波動方程式I -波動の	基本、物質波の	3, 4				
		0泊	波動方程式- シュレディンガー波動方程式I -不確定	性原理、交換条	-, '				
	-		件、交換子-	+- T±str ++++ //-	2 4				
			シュレディンガー波動方程式III -期	<u>生確率、規格化-</u> 待値、行列、デ	3, 4				
			ィラック表記- シュレディンガー波動方程式IV -井戸 トは新古紀式	型ポテンシャル	3, 4				
	2ndQ	1 7 注目	と波動方程式- シュレディンガー波動方程式V -井戸型 波動方程式	型ポテンシャルと	3, 4				
	1		波動方程式-	+\ \rh \					
			水素原子モデルにおけるシュレディン 水素原子モデルにおけるシュレディン		3, 4				
	1		水系原士モナルにありるシュレテイ <i>ン</i> II	ルール乳刀住式 	3, 4				
		15週	中間試験		3, 4	_			

		16ì	周	 これ:	 までのまとめ								
後期		1週		** 東西フェニュニン・ガー は新士程士					3, 4				
		2週			京子モデルに	Sけるシュレディンガー波動方程式 3		3, 4					
		3週	1		京子モデルに	おけるシュレディ	ンガー波動方程	式 :	3, 4				
	3rdQ	4週		· 水素原 VI	京子モデルに	おけるシュレディ	ンガー波動方程	式 :	3, 4				
		5週	1		素原子モデルにおけるシュレディンガー波動方程式 3.4								
		6週	が VI		- - - - - - - - - - - - - - - - - - -			3, 4					
		7週			中間試験								
								3, 4, 5					
			田		固体物性論 II -原子・分子・固体- 5 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =								
		<u> </u>	11週 固体 12週 固体 13週 固体 14週 固体		図 日本中のパクト構造 固体物性論 III -電気的性質・熱的性質- 固体物性論IV -磁気的性質- 固体物性論V -光学的基礎- 固体物性論VI -統計熱力学の基礎- 明末試験			5					
		-						_	5				
	4thQ	-						-	5				
								-	5				
		<u> </u>											
		16ì			れまでのまとめ								
	アカリニ	キュ:		学習	内容と到達						I	1	
分類	<u> </u>		分野		学習内容	学習内容の到達	目標				到達レベル	授業週 後11,後	
						金属の一般的な性質について説明できる。				4	12,後13,後 14		
						原子の結合の種類および結合力や物質の例など特徴について説明 できる。			4	後9,後10			
						結晶構造の特徴の観点から、純金属、合金や化合物の性質を説明 できる。				4	後10,後 13,後14		
	分野別の専 門工学		の専 材料系分野			陽子・中性子・電子からなる原子の構造について説明できる。			きる。	4	前2,前3,前 4,後9,後10		
専門的能力					材料物性	ボーアの水素原子模型を用いて、エネルギー準位を説明できる。				4	前4,前5,前 6,前7,前 9,前10,前 11,前12,前 13,前14,前 15,後1,後 3,後4,後 5,後6		
						4つの量子数を用いて量子状態を記述して、電子殻や占有する電子数などを説明できる。			有する電	4	前6.前7,前9,前10,前11,前12,前13,前14,前15,後1,後3,後4,後5,後6,後7		
						周期表の元素配列に対して、電子配置や各族および周期毎の物性の特徴を関連付けられる。				4	後7,後9		
						結晶系の種類、14種のブラベー格子について説明できる。				· .	4		
						ミラー指数を用いて格子方位と格子面を記述できる。 電子が持つ粒子性と波動性について、現象を例に挙げ、式を用い				 式を田い	4	前1,前2,前	
						て説明できる。				70.6円01	4	3,前4,前5	
				-		量子力学的観点から電気伝導などの現象を説明できる。					4	後9	
						原子の構成粒子を理解し、原子番号、質量数、同位体について説 明できる。				ついて説	4	前1,後9	
						パウリの排他原理、軌道のエネルギー準位、フントの規則から電子の配置を示すことができる。				則から電	4	後9,後 10,後11	
						価電子について理解し、希ガス構造やイオンの生成について説明できる。				4	後9,後 10,後11		
					無機材料	元素の周期律を理解し、典型元素や遷移元素の一般的な性質について説明できる。				4	後9,後 10,後11		
						イオン化エネルギー、電子親和力、電気陰性度について説明でき る。				4	後9,後 10,後11		
						原子価結合法により、共有結合を説明できる。 4 後9,後 10,後11					後9,後		
評価割合													
	試			_	ポート	ノート	態度		ポートフォリオ	その他	合		
総合評価割基礎的能力	総合評価割合 70			30		0	0		0 0		10 45		
専門的能力	30 40			15 15		0	0		0 0		55		
				1-5		-	1 -		i	-			

分野横断的能力	ln	ln	Λ	ln	ln	ln	l n
ノノエディ央ロハロブガロノノ	0	10	U	0	10	10	U