新居浜	江業高等	専門学校	ξ.	開講年度 令和06年度 (2024年度)				授業科目 材料科学 1				
科目基礎	 情報		•			•	,					
科目番号		151204				科目区分		専門 / 必修				
授業形態講義						単位の種別と単位	位数	履修単位: 1	-			
開設学科 環境材料工			工学和	斗	対象学年		2					
開設期後期					週時間数		2					
教科書/教林	·才											
担当教員		當代 光陽	<u>=</u>									
到達目標												
2. 反応式等 3. 基本的な 4. 金属の変	等の化学の基 は結晶構造の ず形について	一礎について 単位格子と 基礎的な説	ご説明ごその説明が	特徴について できる。	説明できる。 な説明ができる。							
ルーブリック												
			理	想的な到達レ	ベルの目安	標準的な到達レベルの目安			未到達レベルの目安			
評価項目1			理	4種類のブラ 解し、その特 る。	ベー格子の原理を 徴について説明で	基本的な結晶構造の特徴について記				結晶構造の単 ついて説明で		
評価項目2			理		等の化学の基礎原 れらについて説明	基本的な反応式管理について説明	等の化学 できる。	どの基礎原	基本的な 理につい	反応式等の化 て説明できな	学の基礎原 い。	
評価項目3		1)	ラー・ブラベ の原理を理解 ことができる	ー指数(面と方向 し、それらを求め 。	ミラー・ブラベ- とができる。	一指数を	を求めるこ	ミラー・ ることが	ブラベー指数 できない。	を求め		
評価項目4				線結晶構造解析 れらについて	沂の理論を理解し、 説明できる。	X線結晶構造解析 る。	斤につい	て説明でき	X線結晶 ない。	ーー 構造解析につい	ハて説明でき	
評価項目5			金属の変形に関する理論を理解し 、具体的な材料試験法を例に挙げ て基礎的な説明ができる。			金属の変形について基礎的な説明 ができる。			金属の変形について基礎的な説明 ができない。			
学科の到	達目標項	目との関	係									
専門知識 (В)											
教育方法	等											
固体 (結晶) 材料について、微視的な立場、この授業では原子レベルから光学顕微鏡観察レベルで、その構造と性質を概要						造と性質を を向け、材						
授業の進め方・方法		板書によ 必要に応	こよる講義形式で授業を進め、レポートにて理解度を確認する。 こ応じて確認テストを行う。									
注意点 本科目的事項			t次に学習する「環境材料工学実験1」、「材料科学2」などを理解するための基礎となる。このことから基礎 こついての演習を行うので、確実に理解をしてほしい。									
本科目の	区分											
Webシラノ	(スと本校履	修要覧の科	目区	分では表記が	異なるので注意する	こと。						
				(医)((科日) [<u> </u>							
	対目の区分 対象にしている演習を行うので、確文に全事でもでもありい。											
	1///	<i></i>					Γ)			生物ののの名が	えによる12末	
授業計画	Ī											
汉木町巨		週	授業	 为容			调ごと	の到達目標				
	-)分類, 様々な金属を		1					
	1	2週					1,2					
		3週	化学	結合論の基礎の		2						
	3rdQ	4週	化学	化学結合論の基礎と材料物性II			2					
				詰晶の定義と14種のブラベー格子			3					
				実際の結晶構造			3					
		7週		ミラー指数 -定義と立方晶系結晶の面の記述法-			3					
		8週	中間試験									
後期	1 4thQ 1	9週	ミラーブラベー指数 -六方晶系結晶の面の記述法				3					
			結晶幾何学の基礎 X線結晶構造解析の基礎I -X線・ブラッグの法則-			4,3						
		12週		線結晶構造解析の基礎II -結晶構造の調べ方について			4					
		13週		オ料試験法の概論-引張り試験と応力ひずみ線図を中心 こして-			5					
		 14週		金属のすべり変形-すべり系とシュミット因子-			5					
				明末試験								
		16週	これまでのまとめ									
モデルコアカリキュラムの学習内容と到達目標												
分類		分野		学習内容	学習内容の到達目標	<u></u> 五 元				到達レベル	授業週	

									※1 ※2 ※
専門的能力				金属の一般的な性質について説明できる。			4	後1,後2,後 3	
				原子の結合の種類および結合力や物質の例など特徴について説明できる。				4	後1,後2,後 3
				結晶構造の特徴の観点から、純金属、合金や化合物の性質を説明 できる。				4	後1,後2,後 3
				陽子・中性子・電子からなる原子の構造について説明できる。				4	後1,後2,後 4
				ボーアの水素原子植	4	後1,後2,後 4			
			材料物性	4つの量子数を用い 子数などを説明でき	4	後1,後2,後 4			
			10141011	周期表の元素配列に対して、電子配置や各族および周期毎の物性 の特徴を関連付けられる。				4	後1,後2,後 4
				結晶系の種類、14	5.	4	後5,後6,後 7,後9,後10		
	分野別 <i>の</i> 専 門工学			ミラー指数を用いて格子方位と格子面を記述できる。				4	後5,後6,後 7,後9,後10
				代表的な結晶構造の原子配置を描き、充填率の計算ができる。				4	後5,後6,後 7,後9,後10
		材料系分野		X線回折法を用いて結晶構造の解析に応用することができる。				4	後5,後6,後 7,後9,後 10,後11,後 12
			無機材料	原子の構成粒子を理解し、原子番号、質量数、同位体について説 明できる。				4	後4
				価電子について理解し、希ガス構造やイオンの生成について説明 できる。				4	
				元素の周期律を理解し、典型元素や遷移元素の一般的な性質について説明できる。				4	
				イオン化エネルギー、電子親和力、電気陰性度について説明できる。				4	
				原子価結合法により、共有結合を説明できる。				4	
				イオン結合の形成と特徴について理解できる。				4	
				金属結合の形成と特徴について理解できる。				4	
				結晶の充填構造・充填率・イオン半径比などの基本的な計算ができる。				4	
				セラミックス、金属材料、炭素材料、複合材料等、無機材料の用途・製法・構造等について説明できる。				4	
			材料組織	弾性変形の変形様式の特徴、フックの法則について説明できる。			できる。	4	後13,後14
			境境	地球温暖化の現象を科学的に説明できる。				4	
			7水7元	エネルギー資源問題について説明できる。				4	
評価割合									
試験		L	<u>/ポート</u>	ノート	態度	ポートフォリオ	その他	合計	-
総合評価割合	à 70	3	0	0	0	0	0	100	
基礎的能力	30	1	5	0	0	0	0	45	
専門的能力	40		5	0	0	0	0	55	
分野横断的能	6力 0	0		0	0	0	0	0	