	兵丨集局	等専門学校	開講年度 平成30年度 (2018年度)	授業科目	量子エレクトロニクス
科目基礎		<u> </u>	(2010 112)	JAKITE	<u> </u>
4目番号		620129		科目区分	専門/選択	3
受業形態		授業		単位の種別と単位		
開設学科		電子工学	専攻	対象学年	専2	
開設期		前期		週時間数	2	
教科書/教材 なし				N	-	
33 33 33 33 34 34 34 34 34 34 34 34 34 3	.,,,	福田京也				
	<u> </u>	11				
光の放出 2二準位原 3レーザー	- と吸収、し 子における -を用いた応	Sコヒーレン l	里について説明できること >相互作用について説明できること いて説明できること			
レーブリ	<u> </u>					1
			理想的な到達レベルの目安	標準的な到達レ		未到達レベルの目安
評価項目1			アインシュタインのA・B係数を 使って光の吸収放出を説明でき、 レーザー発振原理を説明できる	自然放出・誘導放出現象およびレ ーザーによる光増幅原理について 説明できる		光の放出と吸収、レーザーの原3 について説明できない
評価項目2			ラビ振動について理解した上で二 準位原子のコヒーレント相互作用 について説明できる			二準位原子におけるコヒーレン 相互作用について説明できない
評価項目3			最新の研究動向を理解した上でレ ーザー応用技術について具体的に 説明できる	レーザーを用いた応用技術につい レーザーを用いた応用技 て説明できる て説明できない		
学科の至	引達月標I	頁目との関	•			•
専門知識		ハロこの因	ир			
教育方法						
	公寸	店っ ハ		レーレン・トナッセラ	作用を四空!	■ . 判御まるハル料別に利田ナフ
腰		尽士、分	チ、イオンなどの物質と電磁波とのコ 分野である量子エレクトロニクスにつ	に一レントは相互 かいて学ぶ。	TF用で切充し、選信	5・両1単ののいは計測に利用する≒
受業の進む	め方・方法	最初に量・	子論の基礎を学び、その後レーザーの 光を用いる種々の精密測定法とその関	基礎的過程(吸光 連分野について学		
注意点		ので、し	容」に対応する配布プリントの内容を っかり解けるようになっておくこと。 工学、量子力学と関連している。	事前に読んでおく 本科目の理解には	こと。課題として、 、数学、物理、化学	授業の復習となる演習問題を課 学の基礎的な素養を必要とする。F
本科目の	の区分					
受業計画	画					
		週			週ごとの到達目標	
	1stQ		量子エレクトロニクスの基礎1 量子 ディンガー方程式	倫概論、シュレー	1	
		つ:田	量子エレクトロニクスの基礎 2 各種/ 動関数、行列表示	ポテンシャルの波	1	
		3週	光の伝播		1	
		4週	光の放出と吸収 1		-	
					1	
		5週	光の放出と吸収 2			
			光の放出と吸収 2 レーザーの基礎と原理		1	
		6週			1	
		6週 7週	レーザーの基礎と原理		1 1 1	
前期		6週 7週 8週	レーザーの基礎と原理 レーザーの種類と特性	ママック アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア	1 1 1	
前期		6週 7週 8週	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用1(二準位原		1 1 1 1	
前期		6週 7週 8週 9週 10週	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用 1 (二準位原 レント相互作用) コヒーレントな相互作用 2 (スペクト	-ル線の幅とその	1 1 1 1 2 2 2 2,3	
前期	2ndQ	6週 7週 8週 9週 10週	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用 1 (二準位原 レント相互作用) コヒーレントな相互作用 2 (スペクト 意味)	-ル線の幅とその	1 1 1 1 2 2 2,3 3	
前	2ndQ	6週 7週 8週 9週 10週 11週 12週	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用 1 (二準位原レント相互作用) コヒーレントな相互作用 2 (スペクト 意味) いろいろな分光法 (分光の基礎と非級	小線の幅とその	1 1 1 1 2 2 2,3 3 3	
前期	2ndQ	6週 7週 8週 9週 10週 11週 12週 13週	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用 1 (二準位房 レント相互作用) コヒーレントな相互作用 2 (スペクト 意味) いろいろな分光法 (分光の基礎と非級 レーザーの周波数安定化	小線の幅とその	1 1 1 1 2 2 2,3 3	
期	2ndQ	6週 7週 8週 9週 10週 11週 12週 13週 14週	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用 1 (二準位原レント相互作用) コヒーレントな相互作用 2 (スペクト 意味) いろいろな分光法(分光の基礎と非線 レーザーの周波数安定化 周波数計測法	、ル線の幅とその 泉形分光)	1 1 1 1 2 2 2,3 3 3	
期	2ndQ	6週 7週 8週 9週 10週 11週 12週 13週 14週 15週	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用 1 (二準位原 レント相互作用) コヒーレントな相互作用 2 (スペクト 意味) いろいろな分光法 (分光の基礎と非級 レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却	、ル線の幅とその 泉形分光)	1 1 1 1 2 2 2,3 3 3 3	
		6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	レーザーの基礎と原理 レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用 1 (二準位房レント相互作用) コヒーレントな相互作用 2 (スペクト意味) いろいろな分光法 (分光の基礎と非級レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却 量子エレクトロニクスの応用 原子時	、ル線の幅とその 泉形分光)	1 1 1 1 2 2 2,3 3 3 3	
ニデルニ		6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 トユラムの	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用1(二準位房レント相互作用) コヒーレントな相互作用2(スペクト意味) いろいろな分光法(分光の基礎と非終レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却量子エレクトロニクスの応用原子時期末試験	、ル線の幅とその 線形分光) 禁計、超精密分光	1 1 1 1 2 2 2,3 3 3 3	到達レベル 授業调
ミデルニ 3類	コアカリ=	6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週	レーザーの基礎と原理 レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用1(二準位房レント相互作用) コヒーレントな相互作用2(スペクト意味) いろいろな分光法(分光の基礎と非終レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却 量子エレクトロニクスの応用 原子時期末試験	、ル線の幅とその 線形分光) 禁計、超精密分光	1 1 1 1 2 2 2,3 3 3 3	到達レベル 授業週
<u>=</u> デル=	コアカリニ	6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 トユラムの	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用1(二準位原レント相互作用) コヒーレントな相互作用2(スペクト意味) いろいろな分光法(分光の基礎と非終レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却量子エレクトロニクスの応用原子時期末試験 学習内容と到達目標 学習内容と到達目標	、ル線の幅とその 	1 1 1 1 2 2 2,3 3 3 3 3	
ミデルニ }類 平価割合	コアカリニ	6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 トユラムの 分野	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用1(二準位房レント相互作用) コヒーレントな相互作用2(スペクト意味) いろいろな分光法(分光の基礎と非総レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却量子エレクトロニクスの応用原子時期末試験 学習内容と到達目標 学習内容 学習内容の到達目 課題 相互評価	、ル線の幅とその泉形分光)持計、超精密分光標態度	1 1 1 1 2 2 2 2,3 3 3 3 3 3	その他合計
Eデル <u>-</u>) 類 平価割台 総合評価額	コアカリ= 合 試 割合 80	6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 トユラムの 分野	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用1(二準位房レント相互作用) コヒーレントな相互作用2(スペクト意味) いろいろな分光法(分光の基礎と非然レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却量子エレクトロニクスの応用原子時期末試験 学習内容と到達目標 学習内容 学習内容の到達目 課題 相互評価 20 0	、ル線の幅とその泉形分光)等計、超精密分光標態度0	1 1 1 1 2 2 2 2,3 3 3 3 3 3 3 3	その他 合計 0 100
が期 ビデルコ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	コアカリ= 合 試 割合 80 カ 0	6週 7週 8週 9週 10週 11週 12週 13週 14週 15週 16週 ドユラムの	レーザーの基礎と原理 レーザーの種類と特性 中間試験 コヒーレントな相互作用1(二準位房レント相互作用) コヒーレントな相互作用2(スペクト意味) いろいろな分光法(分光の基礎と非総レーザーの周波数安定化 周波数計測法 レーザー冷却、ドップラー冷却量子エレクトロニクスの応用原子時期末試験 学習内容と到達目標 学習内容 学習内容の到達目 課題 相互評価	、ル線の幅とその泉形分光)持計、超精密分光標態度	1 1 1 1 2 2 2 2,3 3 3 3 3 3	その他合計