弓削商船高等専門学校		開講年度	平成29年度 (2017年度)		授業科目	機構学	
科目基礎情報							
科目番号	0010			科目区分 専門 /		修	
授業形態	授業			単位の種別と単位数 履修単位		: 2	
開設学科	電子機械工学科			対象学年	5	5	
開設期	通年			週時間数	2	2	
教科書/教材	機構学(エンジニアリングライブラリ基礎機械工学):森田鈞(サイエンス社)						
担当教員	学生課 教務係						

機構学では、機械の運動を扱う。そのため、機械を構成する要素の種類と特徴を知り、各場面で適切な要素を選択でき、各要素間の運動と力学について計算できることを目標とする。

ルーブリック

到達目標

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安	
瞬間中心について説明と位置の計 算ができる。	瞬間中心の計算ができる。	瞬間中心の説明ができる。	瞬間中心の説明ができない。	
	各要素について、運動・伝達動力 の計算ができる。	各要素について、種類と原理の説明ができる。	各要素について、種類と原理の説 明ができない。	

学科の到達目標項目との関係

専門 A1 専門 A2 教養 D1 専門 E1

教育方法等

概要	・作図や物理・数学の能力を必要とする。十分な復讐を行っておくこと。 ・授業には、簡単な作図のための道具(製図道具でも良い)と計算機を準備しておくこと。ノートは方眼のものが作図 もしやすく望ましい。
授業の進め方・方法	
注音占	

実務経験のある教員による授業科目

授業計画

汉未 司	<u> </u>	1	T.—	I »
		週	授業内容	週ごとの到達目標
		1週	ガイダンス、機構学とは	学習の内容と評価方法を理解できる。
		2週	機械の定義と機構学全体に関する用語解説	機構の定義と用語が説明できる。
		3週	リンク機構の運動と力学	リンク機構の種類、および、運動と力学について説明と計算ができる。
	1stQ	4週	瞬間中心とその解法	
		5週	速度解法	
		6週	加速度解法	
		7週	速度と加速度解法の演習	
		8週	中間試験	
前期		9週	摩擦車および摩擦伝達装置の運動と動力伝達:楕円車	摩擦車および摩擦伝達装置の種類、および、運動と力学について説明と計算ができる。
		10週	摩擦車および摩擦伝達装置の運動と動力伝達:楕円車	
		11週	摩擦車および摩擦伝達装置の運動と動力伝達:円錐車	
	2ndQ	12週	摩擦車および摩擦伝達装置の運動と動力伝達:無断変 速装置	
		13週	摩擦車および摩擦伝達装置の運動と動力伝達:摩擦伝 達装置	
		14週	歯車の曲線:サイクロイド曲線・インボリュート曲線	歯車の曲線について説明と作図ができる。
		15週	歯車の曲線:サイクロイド曲線・インボリュート曲線	
		16週		
		1週	歯車の運動と力学:ラックおよび内歯車	歯車の運動と力学について説明と計算ができる。
		2週	歯車の運動と力学:歯車のかみ合い率およびすべり率	
		3週	歯車の運動と力学:歯車のかみ合い率およびすべり率	
	3rdQ	4週	歯車の運動と力学:かさ歯歯車およびはすば歯車	
	JaruQ	5週	歯車の運動と力学:ウォームギア	
		6週	歯車の運動と力学:遊星歯車列	
後期		7週	歯車の運動と力学:はぐるの設計演習	
		8週	中間試験	
		9週	カム装置とその種類:カム線図	カム装置の種類、および、運動と力学について説明と計算ができる。
		10週	カム装置とその種類:巻き掛け伝動装置	
	4thQ	11週	平ベルトおびベルト:ベルトの伝達力	ベルトの種類、および、運動と力学について説明と計算ができる。
		12週	平ベルトおびベルト:カム装置・ベルト伝達に関する 演習	
		13週	平ベルトおびベルト:カム装置・ベルト伝達に関する 演習	

	14週	機構学応用	幾構学応用			機構学の応用について考察できる。		
	15週	機構学応用						
	16週							
評価割合								
	試験	発表	相互評価	態度	レポート	小テスト	合計	
総合評価割合	70	0	0	0	20	10	100	
基礎的能力	50	0	0	0	10	10	70	
専門的能力	20	0	0	0	10	0	30	
分野横断的能力	0	0	0	0	0	0	0	