己制		専門学校	開講年度 令和02年度 (2	2020年度1	拇	業科目	電気回路	
 科目基礎		· 女 门丁/人	開聯牛及 13和02牛皮 (2	2020年度)	אנו	*110		
付日 茎 処 科目番号	21月羊以	0045		科目区分		専門 / 必	收	
91日留亏 受業形態				単位の種別と単位	7米h			
文案心思		電子機械	工学初	対象学年	L女X	履修単位: 2 3		
用政 <u>于相</u> 開設期		通年	上于177	週時間数				
<u>型政规</u> 教科書/教材	<u></u>		の基礎 第3版:西巻正郎(森北出版					
担当教員	173	瀬濤 喜信		,				
		1.1/1.1-2						
本講義では ・電圧、電 ・キルヒホ	は、すべて <i>の</i> 記流、抵抗に マッフの法則	の電気電子回 こついて物理 則や重ねの定	路解析の基本となる直流・交流回路に 的な意味と関係を理解し、抵抗の直並 理を用いて回路の電流を計算できる。	ついて学ぶ。 列回路に流れる電流	流や抵	抗にかかる	3電圧を計算できる。	
ルーブリ	リック							
			理想的な到達レベルの目安	標準的な到達レベルの目安			未到達レベルの目安	
直流回路の できる。	を基本計算を	をすることが	直流回路の電圧・電流を求めるこ とができる。	則が説明できる。	オームの法則、キルヒホッフの法 則が説明できる。		オームの法則、キルヒホッフの法 則が説明できない。	
複素数の基 きる。	本計算をす	することがで	複素数の計算ができる。	複素数表示、フェーザ表示を説明 できる。		長示を説明	複素数表示、フェーザ表示を説明 できない。	
交流回路の基本計算をすることが できる。			交流回路の電圧・電流を求めるこ とができる。 インピーダンス		、が説明できる。		インピーダンスが説明できない。	
学科の到	」達目標項	頁目との関	係					
専門 A1 教	梵 D1 教養	§ D2 専門 E	1					
教育方法	等							
概要		・すべて(・関連す ²	の電気電子回路解析の基本となる直流 る科目:電子工学(M3)、電子回路(M4	・交流回路について り、電子回路特論(M	C学ぶ。 45)	•		
授業の進め	方・方法	・座学の	講義を基本とする。					
注意点		・必ず問題・上学年の	題を解く復習をし、問題を解く能力を の授業との関係に留意し、目的意識を	修得するとともに、 持って学習すること	理解原	度を自己チ	エックすること。	
実務経験	のある教	対員による	授業科目					
授業計画	Ī							
		週	授業内容	週ごとの到達目標		の到達目標		
		1週	ガイダンス					
		2週	直流回路の基本、オームの法則		オームの法則が理解できる。			
		3週	直流電源の等価回路	Ī	直流電源の等価回路について理解できる。			
	1stQ		直列抵抗による分圧	2	分圧の計算ができる。			
前期			並列抵抗による分流		分流の計算ができる。			
			直並列回路、Y-Δ変換		少し複雑な回路の合成抵抗を求めることができる。			
		H	直並列回路、Y-Δ変換					
		1	中間試験					
	2ndQ		試験解説					
			キルヒホッフ則、網目電流法			網目電流法を使って回路の計算ができる。		
			キルヒホッフ則、網目電流法	.の字冊	ー 重わ合わせを使って回窓の計管ができる			
			重ね合わせの理、テブナン、ノートン 重ね合わせの理、テブナン、ノートン		重ね合わせを使って回路の計算ができる。 テブナン・ノートンの定理の計算ができる。			
			_{里ね合わせの理、テブナン、ノートン} 重ね合わせの理、テブナン、ノートン		, , ,	ン・ノー「	・ノいた任い引昇がしさる。	
			重ねられらい。シックテン、フートン 試験解説					
		16週	B÷41:2√() 31*11/U					
			正弦波交流	+-			ハて理解できる。	

		2週	直流回路の基本、オームの法則	オームの法則が理解できる。
		3週	直流電源の等価回路	直流電源の等価回路について理解できる。
	1 = +0	4週	直列抵抗による分圧	分圧の計算ができる。
	1stQ	5週	並列抵抗による分流	分流の計算ができる。
		6週	直並列回路、Y-Δ変換	少し複雑な回路の合成抵抗を求めることができる。
		7週	直並列回路、Y-Δ変換	
前期		8週	中間試験	
削粉		9週	試験解説	
		10週	キルヒホッフ則、網目電流法	網目電流法を使って回路の計算ができる。
		11週	キルヒホッフ則、網目電流法	
	2ndQ	12週	重ね合わせの理、テブナン、ノートンの定理	重ね合わせを使って回路の計算ができる。
	ZHUQ	13週	重ね合わせの理、テブナン、ノートンの定理	テブナン・ノートンの定理の計算ができる。
		14週	重ね合わせの理、テブナン、ノートンの定理	
		15週	試験解説	
		16週		
		1週	正弦波交流	正弦波交流について理解できる。
		2週	フェーザ表示、複素数表示	フェーザ表示、複素数表示について理解できる。
		3週	フェーザ表示、複素数表示	フェーザ表示、複素数表示の計算ができる。
	3rdQ	4週	交流における回路要素の性質と基本関係式	
	JaruQ	5週	交流回路計算の基本	
		6週	インピーダンス、アドミタンス	インピーダンス、アドミタンスの計算ができる。
		7週	インピーダンス、アドミタンス	
後期		8週	中間試験	
1女州	4thQ	9週	試験解説	
		10週	回路要素の直列接続	回路要素の直列接続の計算ができる。
		11週	回路要素の直列接続	
		12週	回路要素の直列接続	
		13週	回路要素の並列接続	回路要素の並列接続の計算ができる。
		14週	回路要素の並列接続	
		15週	試験解説	
		16週		

評価割合							
	試験	発表	相互評価	態度	ポートフォリオ	その他	合計

総合評価割合	100	0	0	0	0	0	100
基礎的能力	80	0	0	0	0	0	80
専門的能力	20	0	0	0	0	0	20
分野横断的能力	0	0	0	0	0	0	0