]工業高等 禁情報	र स् । । र	TX	開講年度	平成29年度 (2	.01/ 十/又)	12	業科目 村	才料学II			
件日 屋 の 科目番号	に目刊	1037	7			科目区分		専門 / 必修				
村日留ち 授業形態		講義	<u>′</u>			単位の種別と単位		優修単位: 1				
1 開設学科		_	工学科			対象学年	4		_			
部設丁/17 開設期		機械工学科前期				週時間数 2						
*************************************										北出版)		
<u>211日/32</u> 旦当教員	(1)/1	奥村		אוואאוו טו טעא			17 (71-5)	3 1 312/1-20/1/3/1/-1	<u> </u>	<u> чош//х/</u>		
<u>= 3.2.4.</u> 到達目標	<u> </u>		53/(
1. 各種村	- 幾械的性質の 細の基本特	の試験方 生を理解 よび複合	法を説明で し、平衡や 材料の種類		熱処理方法を説明で: 明できる。	きる。						
レーブリ		NO IXII	171 Teo (12)	WC 1912 CDI	73 C C O 0							
<u> </u>	,,,		Ŧ里	想的な到達し	な到達レベルの目安 標準的な到達レベルの目				未到達し	<u>ベルの目安</u>		
評価項目1										的性質の試験	方法を説明	
評価項目2				素鋼の基本特 態図および熱 択できる。	性を理解し, 平衡 処理方法を適格に	状態図および熱処理方法を説明で			炭素鋼の基本特性を理解し, 平復 状態図および熱処理方法を説明で きない。			
==:/=:::::::::::::::::::::::::::::::::				鉄金属材料お と特性を選択	よび複合材料の種 !できる。	非鉄金属材料および複合材料の種 類と特性を説明できる。			非鉄金属 類と特性	材料および複 を説明できな	合材料の種 い。	
学科の登	到達目標耳	頁目との	D関係									
ABEE基	隼1(2) (d)	1)										
教育方法	去等											
既要		機械が	や構造物を 性質の試験 てその種类	を設計するには 検方法および 類と特性を習得	ま,種々の工業材料の 炭素鋼の平衡状態図を 导します。	の特性を熟知し, を理解し、各種熱	これを処理方	的確に選択す 法, さらには	ることが	重要です。本 属材料および	講義では機 複合材料に	
受業の進む	め方・方法	_		内容を講義形式								
主意点		試験は中に	の成績を8 間と期末の おいて評価	80%, 平素の D各期間の評(価する。	学習状況等(課題・ 西の平均とする。技術	小テスト・レポー 析者が身につける	- 卜等) べき専	を20%の割れ 門基礎として	合で総合的 , 到達目	りに評価する。 標に対する達	学年の評(成度を試験	
受業計画	<u> </u>											
		週	授業	 内容			週ごと	の到達目標				
		1週			3]:各種試験方法に	について子が。			食および硬	よび硬さ試験について理解する		
		2週			3] : 各種試験方法に							
		3週			3]:各種試験方法に1							
		4週			3]:各種試験方法に		衝撃試験および磨耗試験の評価方法を知る。					
前期	1stQ	5週	に対り	応したミクロ	鉄-炭素系の平衡状 組織,各種熱処理に	鉄一炭素状態図を説明できる。						
		6週	に対り	芯したミクロ	鉄-炭素系の平衡状組織,各種熱処理に	ついて学ぶ。 「中が歴度に行う組織を						
		7週	に対り	鉄鋼材料 [9-16]: 鉄-炭素系の平衡状態図およびこれ 連続冷却変態線図および等温変態線図 に対応したミクロ組織,各種熱処理について学ぶ。 きる。								
		8週	に対り	鉄鋼材料 [9-16]: 鉄-炭素系の平衡状態図およびこれ 焼入れ試験方法を知り、等温変態について説に対応したミクロ組織,各種熱処理について学ぶ。 。						説明できる		
		9週		各種鉄鋼材料 [17-20]: ステンレス鋼, 耐熱鋼および ステンレス鋼および耐熱鋼に 各種表面処理について学ぶ。					ついて説明できる。			
		10週	各種的		 -20] : ステンレス鋼	,耐熱鋼および	鋼の表	鋼の表面処理方法を説明できる。				
		11週		金属材料 [21	21-22]: アルミニウム合金の種類と特アルミニウム合金の種類			D種類と特	類と特性を説明できる。			
	2ndQ	12週	非鉄金	失金属材料 [21-22] : 銅合金の種類と特性を学ぶ。			銅合金の種類と特性を説明できる。					
	ZnaQ	13週 非鉄 ぶ。		鉄金属材料 [21-22] : チタン合金の種類と特性を学			チタン合金の種類と特性および形状記憶合金について 説明できる。					
		14週	性を	鉄金属材料 [21-22]: マグネシウム合金の種類と特を学ぶ。		マグネシウム合金の種類と特性を説明できる。						
		15旭		合材料 [29-30]:複合材料の種類と特性を学ぶ。 		複合材料の種類と特性を説明できる。						
		16週			E							
	」 アカリ=			内容と到達						I	1	
)類		分!	野	学習内容						到達レベル	授業週	
専門的能力		D. #			荷重が作用した時の材料の変形を説明できる。 応力とひずみを説明できる。				3			
									3			
	\\ === :			力学		解し、弾性係数を説明できる。			3			
	カ 分野別の 門工学	ひ専 機	戒系分野		応力-ひずみ線図を説明できる。				3			
	1, 177				許容応力と安全率を説明できる。				3	<u> </u>		
					機械材料に求められる性質を説明できる。 金属材料、非金属材料、複合材料、機能性材料の性質と用途を							
				 材料				Library Control	m\\\ \alpha \alpha \cdot\\\	3		

				引張試験の方法を理	理解し、応力-ひずる	み線図を説明できる	5.	3		
			<u>石</u>	硬さの表し方および硬さ試験の原理を説明できる。						
				脆性および靱性の意味を理解し、衝撃試験による粘り強さの試験 方法を説明できる。						
			初	恵労の意味を理解し	の意味を理解し、疲労試験とS-N曲線を説明できる。					
			村	幾械的性質と温度の	 の関係およびクリープ現象を説明できる。					
	金属と合金の結晶構造を説明できる。						3			
			2	金属と合金の状態変化および凝固過程を説明できる。						
		合金の状態図の見方を説明できる。						2		
		塑性変形の起り方を説明できる。								
		加工硬化と再結晶がどのような現象であるか説明できる。						3		
	鉄鋼の製法を説明できる。							3		
		炭素鋼の性質を理解し、分類することができる。						3		
		Fe-C系平衡状態図の見方を説明できる。						2		
	焼きなましの目的と操作を説明できる。						3			
	焼きならしの目的と操作を説明できる。					3				
				焼入れの目的と操作を説明できる。						
			焼戻しの目的と操作を説明できる。							
評価割合										
	試験	3	発表	相互評価	態度	ポートフォリオ	その他		合計	
総合評価割合	80)	0	0	20	0		100	
基礎的能力	礎的能力 35)	0	0	10	0	45		
専門的能力	カ 35)	0	0	5	0		40	
分野横断的能力	10)	0	0	5	0		15	
	+						1			