高知工業高等専門学校		開講年度	平成28年度 (2016年度)		授	受業科目	強度設計学		
科目基礎情報									
科目番号	0006	科目区分	目区分 専門 / 選択						
授業形態	講義			単位の種別と単	位数	履修単位: 2			
開設学科	機械・電気工学専攻			対象学年		専2			
開設期	前期		週時間数		前期:2				
教科書/教材	教科書の指定 確率・統計の	はなし 参考 信頼性への適用		中井 善一「材料	強度」	(コロナ社)	福井 泰好「入門 信頼性工学 -		
担当教員 北村 一弘									
到達日煙				·			· ·		

|到廷日倧

- 【到達目標】 1. トラス構造とラーメン構造について解析できる。 2. FTAを用いて故障解析ができる。 3. マイナー則を用いて寿命予測ができる。 4. ワイブル確立紙を利用することができる。 5. 信頼性工学の基本的な考え方を設計,構築,解析に役立てることができる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安					
評価項目 1	トラス・ラーメン構造の解析ができる。	トラス・ラーメン構造の解析方法 が理解できる。	トラス・ラーメン構造の解析方法 が理解できない。					
評価項目 2	FTAを用いて故障解析を説明できる。	FTAについて理解できる。	FTAが描けない。					
評価項目 3	冗長性と信頼性について説明でき る。	冗長性と信頼性について理解でき る。	冗長性と信頼性について理解でき ない。					
評価項目4	信頼性工学の観点から材料の破壊 の防止についてワイブル確率紙を 用いて説明できる。	信頼性工学の観点から材料の破壊 の防止とワイブル分布について理 解できる。	ワイブル分布について説明できない。					

学科の到達目標項目との関係

学習・教育到達目標 (D) JABEE基準1(2) (d)(1)

教育方法等

概要	近年,原子力発電所、鉄道、航空機をはじめとして多くの機器・構造物で事故が発生している。 その事故原因は疲労等によって発生したき裂が主因となっている場合が多い。与えられた材料が降伏、破壊、疲労、クリープ、応力腐食割れなどの破損現象に対して、どこまで負荷に耐えうるかを定量的に明らかにし、機械・構造物などを十分な強度をもつように設計する手法について学習する。
授業の進め方・方法	具体的な設計またはデータを用いた演習問題を解いていく、その後、演習問題解答の解説を行う

試験の成績を70%,平素の学習状況等(課題・小テスト・レポート等を含む)を30%の割合で総合的に評価する。実務に応用できる専門基礎知識として,到達目標に対する達成度を試験等において評価する。 注意点

授業計画

担選 投業内容 過ごとの到達目標 過ごとの到達目標 過速度設計の意義:信頼性技術の基本的な考え方につい 信頼性技術の基本的な考え方が説明できる。	授業計									
19世			週	授業内容	週ごとの到達目標					
1stQ			1週		信頼性技術の基本的な考え方が説明できる。					
1stQ する軸荷重とその変形について学ぶ 3。 5週			2週		信頼性技術の基本的な考え方が説明できる。					
1stQ する軸荷重とその変形について学ぶ 3。			3週							
5週 トラス構造とラーメン構造の定義と特徴:要素に作用 する軸荷重とその変形を求めるごとかできる。 トラス構造とラーメン構造の定義と特徴:要素に作用 する軸荷重とその変形について学ぶ 頼性物理と構造信頼性について説明できる。 トラス構造とラーメン構造の定義と特徴:要素に作用 する軸荷重とその変形について学ぶ 頼性物理と構造信頼性について説明できる。 トラス構造とラーメン構造の定義と特徴:要素に作用 する軸荷重とその変形について学ぶ 頼性物理と構造信頼性について説明できる。		1ctO	4週							
する軸荷重とその変形について学ぶ		IsiQ	5週							
対している。			6週	トラス構造とラーメン構造の定義と特徴:要素に作用する軸荷重とその変形について学ぶ	頼性物理と構造信頼性について説明できる。					
前期 9週 する軸荷重とその変形について学ぶ 預点が基と情報性について説明できる。 10週 環境強度の定義と特徴: 冗長性と信頼性について解説 冗長性と信頼性について説明できる。 10週 環境強度の定義と特徴: 冗長性と信頼性について解説 冗長性と信頼性について説明できる。 11週 環境強度の定義と特徴: 冗長性と信頼性について解説 冗長性と信頼性について説明できる。 12週 構造信頼性: 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 できる。 13週 構造信頼性: 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 できる。 14週 構造信頼性: 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 できる。 15週 構造信頼性: 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 できる。 15週 構造信頼性:信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止 15週 横造信頼性:信頼性工学の観点から材料の破壊の防止 15週 できる。 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して解説する。 15週 日本に対して説明 15週 日本に対して記述する。 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して記述する。 15週 日本に対して説明 15週 日本に対して説明 15週 日本に対して説明 15週 15週			7週		頼性物理と構造信頼性について説明できる。					
10週 する。			8週	トラス構造とラーメン構造の定義と特徴:要素に作用する軸荷重とその変形について学ぶ	頼性物理と構造信頼性について説明できる。					
10月 する。 11月 11	前期		9週		冗長性と信頼性について説明できる。					
11週 する。			10週	環境強度の定義と特徴:冗長性と信頼性について解説する。	冗長性と信頼性について説明できる。					
12週 について解説する。 信頼性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 できる。 横造信頼性:信頼性工学の観点から材料の破壊の防止について説明 できる。 横造信頼性:信頼性工学の観点から材料の破壊の防止について説明 できる。 できる。			11週		冗長性と信頼性について説明できる。					
13週 について解説する。 信頼性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 14週 構造信頼性:信頼性工学の観点から材料の破壊の防止 信頼性工学の観点から材料の破壊の防止について説明 できる。			12週							
14週 について解説する。 「高瀬性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 信頼性工学の観点から材料の破壊の防止について説明 できる。		2ndQ	13週	構造信頼性:信頼性工学の観点から材料の破壊の防止 について解説する。						
15週 について解説する。			14週							
16週			15週							
			16週							

モデルコス	 プカリキュ [:]	 ラムの学習	 3内容と到達						
分類		分野	学習内容	学習内容の到達目]標			到達レベル	授業週
			1	機械設計の方法を理解できる。				2	前1,前2
			機械設計	標準規格の意義を説明できる。			2	前1,前2	
				許容応力、安全率	許容応力、安全率、疲労破壊、応力集中の意味を説明できる。			3	前1,前2
				荷重が作用した	荷重が作用した時の材料の変形を説明できる。			3	前3,前4,前 5,前6
				応力とひずみを説明できる。				3	前3,前4,前 5,前6
				フックの法則を理解し、弾性係数を説明できる。			3	前3,前4,前 5,前6	
				応力-ひずみ線図を説明できる。				3	前3,前4,前 5,前6
				許容応力と安全率を説明できる。				3	前3,前4,前 5,前6
				断面が変化する棒	断面が変化する棒について、応力と伸びを計算できる。			3	前3,前4,前 5,前6
				棒の自重よって生	上じる応力とひず る	みを計算できる。		3	前3,前4,前 5,前6
	分野別の専門工学	機械系分野		両端固定棒や組合 きる。	合せ棒などの不静な	定問題について、応力	力を計算で	3	前3,前4,前 5,前6
				線膨張係数の意味	未を理解し、熱応ス	力を計算できる。		3	前3,前4,前 5,前6
					ねじりを受ける丸棒のせん断ひずみとせん断応力を計算できる。				前3,前5,前 6
専門的能力				丸棒および中空丸棒について、断面二次極モーメントと極断面係 数を計算できる。				3	前3,前5,前 6
			力学	軸のねじり剛性の意味を理解し、軸のねじれ角を計算できる。				3	前3,前5,前 6
				はりの定義や種類、はりに加わる荷重の種類を説明できる。				3	前6,前8
				はりに作用する力のつりあい、せん断力および曲げモーメントを計算できる。				3	前6,前8
				を作成できる。					前6,前8
				きる。		が応力およびその分れ		3	前6,前8
				曲げの問題に適用	各種断面の図心、断面二次モーメントおよび断面係数を理解し、曲げの問題に適用できる。				前6,前8
				各種のはりについて、たわみ角とたわみを計算できる。				3	前6,前8
				多軸応力の意味を説明できる。				3	前6,前7,前 8
				二軸応力について、任意の斜面上に作用する応力、主応力と主せん断応力をモールの応力円を用いて計算できる。				3	前6,前7,前 8
				部材が引張や圧縮を受ける場合のひずみエネルギーを計算できる。				3	前6
				部材が曲げやねじりを受ける場合のひずみエネルギーを計算できる。				3	前6
				カスティリアノの定理を理解し、不静定はりの問題などに適用で きる。				3	前6
評価割合	<u> </u>	1							
試験発表				相互評価	態度	ポートフォリオ	その他	合計	<u> </u>
総合評価割合 70 0 基礎的能力 0 0				0	0	30	0	100)
				0	0	0	0	0	
専門的能力 70 0				0	0	30	0	100)
分野横断的能力 0 0				0	0	0	0	0	