日日紀神宗 195007 19日区分 19月 38月 3	 高知	1丁業高等	 専門学校	開講年度 令和04年度 (2	2022年度)	授業科目	電子デバイス				
#日田田日						, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 - 2 · · · · · · · ·				
製売		ХТСП	NSOO7		科目区分	車相 / 强	·····································				
独別				ルギー・環境コーマ			±				
製造型が対対 製造工作機能について設定できる。 1年時代を用いたボデバイスについて設定できる。 3 半時代を用いたボデバイスについて設定できる。 3 半時代を用いたボデバイスについて設定できる。 3 半時代を用いたボデバイスについて設定できる。 3 半時代を用いたボデバイスについて設定できる。 4 半時を利したボデバイスについて設定できる。 4 半時を利したボデバイスについて認定できる。 1 上の に				// 水光コー人							
国連的理 国連 日本 日本 日本 日本 日本 日本 日本 日		++		伊藤 原田「これからフカート」 電気	1						
図注: 日本		.47/1		· · · · · · · · · · · · · · · · · · ·	电丁材料」(电对	音阮/					
19			小呵 连元	27							
リープリック 理想的な可達レベルの目安	【到達目棋 1. 半導体 2. 半導体 3. 半導体	票】 本デバイスの 本を用いた電 本を用いたる	電子デバイス ビデバイスに	くについて説明できる。 こついて説明できる。							
理想的と到達レベルの目安			17 103-611-02	DIERCE COMMINED V. CIMENTO CC DO							
平海体の性質については、世界に、できる。 ・ 半海体の性質について説明できる。 ・ 中海体を用いた電子デバイスについて説明できる。 ・ 半海体を用いた電子デバイスについて記明できる。 ・ 半海体を用いた電子デバイスについて説明できる。 ・ 半海体を用いた電子デバイスについて説明できる。 ・ 半海体を用いた光デバイスについて説明できる。 ・ 半海体を用いた光デバイスについて説明できる。 ・ 半海体を用いた光デバイスについて説明できる。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	/V 25	777		理想的お到達しがよの日常	無進的+>到達1		土列港1 ベルの日内				
中海体を用いた電子デバイスについて説明できる。	評価項目1			半導体の性質について正しく理解し、応用分野について詳細に説明			半導体の性質について説明できな				
平海体を削した光デバイスについて設明できる。 平海体を削した光デバイスについて説明できる。 お伝導体、配性体、誘電体の性質について主にと関係し、その動作原理について主にと関係し、その動作原理について主に対すことが関係とある。 お伝導体、配性体、誘電体の性質について説明できる。 お伝導体、配性体、誘電体の性質について説明できる。 お佐海体、配性体、誘電体の性質について説明できる。 お佐海体、配性体、誘電体の性質について説明できる。 お佐海体、配性体、誘電体の性質について説明できる。 お佐海体、配性体、誘電体の性質について説明できる。 を著す、光デバイスに用いられている 半導体材料について、その基礎物性を理解し、さらにその応用分野を材料性と関係しても関係を発し、この自目は企業材料物性、要がにおいても理解する。また、半導体以外の材料による。 東ニッドで理解を表現る。半導体材料については近年が政策が同じついても理解する。また、半導体以外の材料による。 東ニッドでも関係といて課題を行うものである。 「無定性用する説明真体」を対するが、事情を必要を持続が、実施していた表していた教育が、その経験を活かし、「規範の差を図る」と、「抗験の疾者で706、「来来の学習状況等(課題・小テスト・レボート等を含む)を30%の割合で総合的に評価する。別域は中の定着を図ること。 「成績評価の基準・方法」、対象の定着を図ること。 「成績評価の基準・方法」、対象の定着を図ること。 「成績に放き706、「来来の学習状況等(課題・小テスト・レボート等を含む)を30%の割合で総合的に評価する。別域は中間と関係を70にフォスータの関係をがいて、対象を開きまして、事前配価は対象が表別が目的で対して対象を認定して、対象を対象を認定を記述。事情とおりに対するる。技術とかりに対象を70%。「非常と対象を70%」「非常は関係力を含めたらえず、与えられた事前課題に取り組むとよ。また、事事が書まして、更可能を70%」「非常は関係力を表したうえで、与えられた事前課題に取り組むと、また、事事が書まして、更可能を70%」(事前とおりにでは関係である。例を表にあたり、1・4・4年の数学は10% 「実施を70%」(第10% 「大きな 70% 「大きな				半導体を用いた電子デバイスにつ いて正しく理解し、その動作原理	半導体を用いた	電子デバイスにつ					
□ ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □				について詳細に説明できる。	半導体を用いた		 半導体を用いた光デバイスについ				
「中国・	· T Ш 以 日 5	,		ついて詳細に説明できる。 超伝導体、磁性体、誘電体の性質	て説明できる。		て説明できない。				
学習・教育到達度目標 (C) 教育方法等 電子・光デバイスに用いられている 半導体材料について、その基礎物性を理解し、さらにその応用分野を材料物性と連づけて理解を深める。半導体材料については近年の技術動間についても理解する。また、半導体以外の材料による。用用について連嚢形式で提案を行うものである。 講義で使用する影射な対は、事前に配わするので、教科書と付せて自習しておくこと、自習によって分からなかった。 「規薬中に質問し」解決するように心がけること。授業中、帰宅後に、教科書中の演習問題を解答することで 「知識が回る差包図ること」 「成就評価の基準・方法」 「説象の成結を70名制制の評価の平りにする。技術者が身につけるへき専門基礎として、到達目標に対する達成度を試け、事前学習と、事前を指摘の平均にする。技術者が身につけるへき専門基礎として、到達目標に対する達成度を試け、事前学習として、事前配不資料と教科書の該当部分を禁んだうえで、「授業中に理解できなかった部分を侵割すること。「「記録上の注意」」 この科目を履修するにあたり、1~4年の数学及び物理科目、3年の機能性材料の内容を十分に理解しておくこと。前に限議される半導体材料と併せて受講することを推奨する。 受業の属性・履修上の区分 「プイスの基礎についても学ぶ。」 「温陽授業対応 」 東務経験のある教員による哲學業計画 「選案内容」 半導体の物理[1-3]:半導体中のキャリアと伝導、半導 金属 半導体接合について理解する。 の接合について理解する。 かまが作成の表現についても学ぶ。 2週 半導体の物理[1-3]:半導体中のキャリアと伝導、半導 金属 半導体接合について理解する。 かまが作成が表現を使いている基礎についても学ぶ。 2週 半導体の物理[1-3]:半導体中のキャリアと伝導、半導 会属 半導体関する。 が、結晶作を支術、素子構造、素子作数方法について学 が、結晶作を支術、素子構造、素子作数方法について学 が、結晶作を支術、素子構造、素子作数方法について学 、	評価項目4	1		について正しく理解し,各材料の 応用分野について詳細に説明でき	超伝導体, 磁性化 について説明でも	本, 誘電体の性質 きる。 	恒 超伝導体,磁性体,誘電体の性質について説明できない。				
学習・教育到達度目標 (C) 教育方法等 電子・光デバイスに用いられている 半導体材料について、その基礎物性を理解し、さらにその応用分野を材料物性と連づけて理解を深める。半導体材料については近年の技術動間についても理解する。また、半導体以外の材料による。用用について連嚢形式で提案を行うものである。 講義で使用する影射な対は、事前に配わするので、教科書と付せて自習しておくこと、自習によって分からなかった。 「規薬中に質問し」解決するように心がけること。授業中、帰宅後に、教科書中の演習問題を解答することで 「知識が回る差包図ること」 「成就評価の基準・方法」 「説象の成結を70名制制の評価の平りにする。技術者が身につけるへき専門基礎として、到達目標に対する達成度を試け、事前学習と、事前を指摘の平均にする。技術者が身につけるへき専門基礎として、到達目標に対する達成度を試け、事前学習として、事前配不資料と教科書の該当部分を禁んだうえで、「授業中に理解できなかった部分を侵割すること。「「記録上の注意」」 この科目を履修するにあたり、1~4年の数学及び物理科目、3年の機能性材料の内容を十分に理解しておくこと。前に限議される半導体材料と併せて受講することを推奨する。 受業の属性・履修上の区分 「プイスの基礎についても学ぶ。」 「温陽授業対応 」 東務経験のある教員による哲學業計画 「選案内容」 半導体の物理[1-3]:半導体中のキャリアと伝導、半導 金属 半導体接合について理解する。 の接合について理解する。 かまが作成の表現についても学ぶ。 2週 半導体の物理[1-3]:半導体中のキャリアと伝導、半導 金属 半導体接合について理解する。 かまが作成が表現を使いている基礎についても学ぶ。 2週 半導体の物理[1-3]:半導体中のキャリアと伝導、半導 会属 半導体関する。 が、結晶作を支術、素子構造、素子作数方法について学 が、結晶作を支術、素子構造、素子作数方法について学 が、結晶作を支術、素子構造、素子作数方法について学 、	学科の至]達目標項	目との関	·····································							
教育方法等 電子・光デバイスに用いられている 半導体材料について、その基礎物性を理解し、さらにその応用分野を材料物性と通うけて理解を深める。半導体材料についても近年の技術動向についても理解する。また、半導体以外の材料により、上記が含について論義形式で授業を行うものである。 開についても理解する。の利目は企業で材料物性・電子デバイスの研究を担当していた教員が、その経験を活かり、上記が含について論義形式で授業を行うものである。 調義で使用する説明資料は、事前に配布するので、教科書と併せて自習しておくこと。自習によって分からなかった。 ころは、授業中に関し、解決するように心がけること・授業中、帰宅後に、教科書中の演習問題を解答することで 、 「成績評価の基準・方法] 「試験の成績を70%、平表で、方法] 「試験の成績を70%、平表で、方法] 「試験の成績を70%、平表で、方法] 「試験の成績を70%、平表で、方法] 「は中間と期末の各制間の評価の平均とする。技術者が身につけるべき専門基礎として、到達目標に対する違成度を対策において評価する。「早前・事後学習」とし、事前配布資料と教科書の該当部分を誘えだうえて、与えられた事前課題に取り組むこと。また、事が、											
電子・光デルイスに用いられている 半導体材料について その基礎物性を理解し、さらにその応用分野を技材物性と 型づけて理解を実める。半導体材料については正の技術物面について世解する。また、半導体以外の材料による 用についても実施する。この科目は企業で対料物性・電子デルイスの研究を担当していた教育が、その経験を活かし 上記の部については実施する。この科目は企業で対料物性・電子デルイスの研究を担当していた教育が、その経験を活かし 関業の進め方・方法 講義で使用する説明資料は、事前に配布するので、教科書と併せて自習しておくこと。自習によって分からなかった。 ころは、授業中に自間し、解決するように心がけること。授集中、帰宅後に、教科書中の演習問題を解答することで、 知識の定着を図ること。 「成婚評価の基準・方法」 試験の成権を70%、平素の学習状況等(課題・小テスト・レポート等を含む)を30%の割合で総合的に評価する。訳は中間と開来の各期間の評価の平均とする。技術者が身につけるべき専門基礎として、到達目標に対する違成度を記 等において評価する。 「事前・事後学習」 事前配有資料と教料書の該当部分を読んだうえで、与えられた事前課題に取り組むこと。また、事刊 「保修上の上記」 この科目を配修するにあたり、1~4年の数学及び物理科目。3 年の機能性材料の内容を十分に理解しておくこと。前生に関連される半導体材料と併せて受講することを推奨する。 「関業の属性・履修上の区分」 「ICT 利用」 」 遠隔授業対応			(-)								
受業の進め方・方法	概要		連づけて	[・] 理解を深める。半導体材料については	近年の技術動向に	ついても理解する	5。また、半導体以外の材料による応				
試験の成績を70%、	授業の進め	め方・方法	ころは,	授業中に質問し、解決するように心が	で,教科書と併せ けること。授業中	て自習しておくこ , 帰宅後に, 教科	こと。自習によって分からなかったと 料書中の演習問題を解答することで				
受業の属性・履修上の区分 □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員による哲 □ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員による哲 □ 授業内容 □ 担遇	注意点		試験の成という。 は等 に事 がの に は 等 に 事 が に ま が に が に は に に が に に が に に が に に に に に に	後の成績を70%,平素の学習状況等(課題・小テスト・レポート等を含む)を30%の割合で総合的に評価する。評価 可間と期末の各期間の評価の平均とする。技術者が身につけるべき専門基礎として,到達目標に対する達成度を試験 こおいて評価する。 事前・事後学習】 が学習として,事前配布資料と教科書の該当部分を読んだうえで,与えられた事前課題に取り組むこと。また,事後 習として,配布される授業時に使用したスライドを参考にして,授業中に理解できなかった部分を復習すること。 最後上の注意】 の料目を履修するにあたり,1~4年の数学及び物理科目,3年の機能性材料の内容を十分に理解しておくこと。前学期							
□ アクティブラーニング □ ICT 利用 □ 遠隔授業対応 □ 実務経験のある教員による哲 □ 授業内画 □ 授業内容 □ 週ごとの到達目標 □ 塩属ー半導体の物理[1-3]: 半導体中のキャリアと伝導, 半導 □ 塩属ー半導体接合について理解する。 □ 世導体の物理[1-3]: 半導体中のキャリアと伝導, 半導 □ □ 中接合について理解する。 □ 世導体の物理[1-3]: 半導体中のキャリアと伝導, 半導 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		記性。 居修	_		で 作 突ゅる。						
授業計画 週 授業内容 週ごとの到達目標 週ごとの到達目標 1週						-	ロ 宇教奴段のちて物号による極端				
週 授業内容 週ごとの到達目標 1週	」アクテ	-イノフー_	- ン ソ		□ 退隔投耒刈川	<i>y</i>	凶 美務栓験のある教員による技				
週 授業内容 週ごとの到達目標 1週											
1週	党 案計画		1.	L. a.m. a. a.							
#導体の物理[1-3]: 半導体中のキャリアと伝導, 半導体が関係でいて理解する。 2週			週			週ごとの到達目標	示				
本デバイスの基礎についても学ぶ。	後期	3rdQ	1週	体デバイスの基礎についても学ぶ。		金属-半導体接名	合について理解する。 				
本デバイスの基礎についても学ぶ。				体デバイスの基礎についても学ぶ。							
3rdQ 3rdQ				体デバイスの基礎についても学ぶ。 半道休零子デバイフ[4-7]・半道休##	※の種類と構造	pn接合について理解する。					
5週			4週	, 結晶作製技術 , 素子構造 , 素子作製 ぶ。	方法について学	半導体材料の種類と構造について理解する。					
6週 ,結晶作製技術,素子構造,素子作製方法について学 素子構造,素子作製方法について理解する。 半導体電子デバイス[4-7]: 半導体材料の種類と構造 ,結晶作製技術,素子構造,素子作製方法について学 素子構造,素子作製方法について理解する。 8週 半導体光デバイス[8-10]:発光メカニズム,発光素子 発光メカニズムについて理解する。 半導体光デバイス[8-10]:発光メカニズム,発光素子 発光メカニズムについて理解する。			5週	, 結晶作製技術, 素子構造, 素子作製 ぶ。 	結晶作製技術,	f, 素子作製方法について理解する。 					
8週 半導体光デバイス[8-10]: 発光メカニズム,発光素子 発光メカニズムについて理解する。			6週	結晶作製技術,素子構造,素子作製方法について学 素子構造,素子作製方法について理解 ぶ。							
8週 半導体光デバイス[8-10]: 発光メカニズム,発光素子 発光メカニズムについて理解する。			7週	半導体電子デバイス[4-7]:半導体材 ,結晶作製技術,素子構造,素子作製 ぶ。	料の種類と構造 方法について学	素子構造,素子作製方法について理解する。					
4thQ 9週 半導体光デバイス[8-10]:発光メカニズム,発光素子 発光素子について理解する。			8週	半導体光デバイス[8-10]: 発光メカニ		発光メカニズムについて理解する。					
		4thQ	9週	半導体光デバイス[8-10]: 発光メカニ , 受光素子について学ぶ。	ズム,発光素子	発光素子について理解する。					

		10ì	周	半導体光デバイス[8-10]:発光メカニズム,発光素子 , 受光素子について学ぶ。				受光素子について理解する。					
		11ì	11週 超材		尊デバイス[1 ヒその応用に	1-12] : 超伝導の基準 ついて学ぶ。	超伝導の基本現象について理解する。						
	13周 起					担信道デバイフ[11 12]・担信道の甘太田免 担信道				超伝導材料とその応用について理解する。			
	13週 学				デバイス[13]	:磁性体の性質とその	磁性体の種類,磁気モーメント,強磁性体の磁化とそ の応用について理解する。						
					 	 4] : 誘電体の電気特 学ぶ。	誘電体の電気特性,誘電分極とその応用について理解 する。						
	その他の各種材料[15]: 導電材料,抵抗材料,新炭素 材料とその応用について学ぶ。 場理							導電材料,抵抗材料,新炭素材料とその応用について 理解する。					
	16週												
モデルコス	モデルコアカリキュラムの学習内容と到達目標												
分類 分野					学習内容	学習内容の到達目標				到達レベル	授業週		
						金属の電気的性質を説明し、移動度や導電率の計算ができる。			3	後2			
		別の専 電気学 系分			電子工学	pn接合の構造を理解し、エネルギーバンド図を用いてpn接合の電流一電圧特性を説明できる。			3	後1,後2,後 3			
専門的能力	分野別の 門工学		電気・電 系分野	電子		バイポーラトランジスタの構造を理解し、エネルギーバンド図を 用いてバイポーラトランジスタの静特性を説明できる。		3	後1,後2,後 3,後4,後 5,後6,後7				
						電界効果トランジスタの構造と動作を説明できる。 3		3	後1,後2,後 3,後4,後 5,後6,後7				
評価割合													
試験					———— 験		平素の学習状況等(課題・小テスト・レポート等を含む)		合計				
総合評価割合							30 100		100	00			
基礎的能力				20			30 50						
専門的能力				50			0 50						
分野横断的能	分野横断的能力					0 0		0					