高知工業高等専門学校		開講年度	令和02年度 (2	2020年度)	授業科目	制御工学Ⅱ		
科目基礎情報								
科目番号	R5014			科目区分	専門 / 必	専門 / 必修		
授業形態	講義			単位の種別と単位数	数 履修単位	履修単位: 2		
開設学科	SD ロボティクスコース			対象学年	5	5		
開設期	通年			週時間数	2	2		
教科書/教材	教科書:森 泰親「演習で学ぶ基礎制御工学 新装版」「演習で学ぶ現代制御理論 新装版」(森北出版)							
担当教員	中山 信							
到達日橝								

- 1.制御系の周波数特性・過渡特性・定常特性を理解し、説明できる。 2.複数の安定判別法を理解し、それを適用して制御系の安定・不安定を判別できる。 3.システムを状態方程式で記述出来て、状態の推移と固有値との関係を説明できる。 4.可制御の判別に基づき、極配置法による状態フィードバック系が設計出来て、サーボ系にも適用できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
評価項目1	実際の制御系に対し、周波数特性 ・過渡特性・定常特性に基づいた 説明ができる。	制御系の周波数特性・過渡特性・ 定常特性を理解し、説明できる。	制御系の周波数特性・過渡特性・ 定常特性を理解し、説明できない。
評価項目2	複数の安定判別法を適用して制御 系を安定にする条件を求めること ができる。	複数の安定判別法を理解し、それ を適用して制御系の安定・不安定 を判別できる。	複数の安定判別法を理解し、それ を適用して制御系の安定・不安定 を判別できない。
評価項目3	様々なシステムを状態方程式で記述出来て、状態の推移と固有値と の関係をモード展開から説明できる。	システムを状態方程式で記述出来 て、状態の推移と固有値との関係 を説明できる。	システムを状態方程式で記述出来 て、状態の推移と固有値との関係 を説明できない。
評価項目4	様々な可制御の判別に基づき、一般的な状態フィードバック系が設計出来て、サーボ系にも適用できる。	可制御の判別に基づき、極配置法 による状態フィードバック系が設 計出来て、サーボ系にも適用でき る。	可制御の判別に基づき、極配置法 による状態フィードバック系が設 計ができず、サーボ系にも適用で きない。

学科の到達目標項目との関係

教育方法等

概要	制御工学は大きく古典制御と現代制御に分けられます。古典制御は時間領域をラプラス領域や周波数領域に移して、現代制御は時間領域をそのまま状態方程式という行列表現に移して制御系設計を行う手法であり、様々な現場で広く活用されています。制御工学 I では古典制御の基本を、制御工学 II では古典制御の応用と現代制御の基本を学びます。古典制御ではラプラス領域や周波数領域における制御系設計の利便性を、現代制御では状態方程式による制御系設計の利便性を理解することを狙いとしています。
授業の進め方・方法	前期の授業は教科書「演習で学ぶ基礎制御工学」に沿って、後期の授業は教科書「演習で学ぶ現代制御理論」に沿って 基本的に進められる。 授業後、授業内容の課題が出される。
注意点	試験の成績を70%, 平素の学習状況等(課題・小テスト・レポート等を含む)を30%の割合で総合的に評価する。学期毎の評価は中間と期末の評価の平均, 学年の評価は前学期と後学期の評価の平均とする。なお, 後学期中間の評価は前学期中間, 前学期末, 後学期中間の各期間の評価の平均とする。技術者が身につけるべき専門基礎として, 到達目標に対する達成度を試験等において評価する。前期中間試験日程が設定されない本年度は、これに代わる試験を登校時の授業時間内にて行う。

授業計画

יוום	₹			T			
		週	授業内容	週ごとの到達目標			
		1週	1. 周波数応答①:周波数応答, ベクトル軌跡について学ぶ。	1. 周波数応答①:周波数応答, ベクトル軌跡を説明できる。			
		2週	1. 周波数応答①:周波数応答, ベクトル軌跡について学ぶ。	1. 周波数応答①:周波数応答,ベクトル軌跡を説明できる。			
		3週	1. 周波数応答①:周波数応答, ベクトル軌跡について学ぶ。	1. 周波数応答①:周波数応答,ベクトル軌跡を説明できる。			
	1stQ	4週	2. 周波数応答②:ボード線図について学ぶ。	2. 周波数応答②:ボード線図を説明できる。			
		5週	2. 周波数応答②:ボード線図について学ぶ。	2. 周波数応答②:ボード線図を説明できる。			
		6週	2. 周波数応答②:ボード線図について学ぶ。	2. 周波数応答②:ボード線図を説明できる。			
		7週	項目1・2の復習	項目1・2をまとめることができる			
		8週	3. 過渡特性:過渡特性について学ぶ。	3. 過渡特性:過渡特性を説明できる。			
前期		9週	3. 過渡特性:過渡特性について学ぶ。	3. 過渡特性:過渡特性を説明できる。			
		10週	3. 過渡特性:過渡特性について学ぶ。	3. 過渡特性:過渡特性を説明できる。			
		11週	4. システムの安定性:安定判別法,安定度について学ぶ。	4.システムの安定性:安定判別法を適用できて,安定度を説明できる。			
	2 - 40	12週	4. システムの安定性:安定判別法,安定度について学ぶ。	4.システムの安定性:安定判別法を適用できて,安定度を説明できる。			
	2ndQ	13週	4.システムの安定性:安定判別法,安定度について学ぶ。	4. システムの安定性:安定判別法を適用できて,安定度を説明できる。			
		14週	項目3・4の復習	項目3・4をまとめることができる			
		15週	5. 状態方程式: 状態方程式によるシステムの記述法を学ぶ。	5. 状態方程式: 状態方程式によるシステムの記述ができる。			
		16週					
		1週	5. 状態方程式: 状態方程式によるシステムの記述法を学ぶ。	5. 状態方程式:状態方程式によるシステムの記述ができる。			
後期 3rdQ	2週	6. システムの応答と安定性:状態遷移行列,固有値について学ぶ。	6. システムの応答と安定性:状態遷移行列と固有値が、システムの応答と安定性にどのように関わるか説明できる。				

		3逓			システムの応 ハて学ぶ。	答と安定性:状態	6. システムの応 が, システムの応 明できる。	. システムの応答と安定性:状態遷移行列と固有値 , システムの応答と安定性にどのように関わるか説 できる。				
		4週		7. 可制御性①:座標変換行列による行列の対角化に 7. 可制御性①:座標変換行 ついて学ぶ。 7. 可制御性①:座標変換行 できる。								
		5逓	1		可制御性①: で学ぶ。	制御性①:座標変換行列による行列の対角化に 7. 可制御性①:座標変換行 学ぶ。 できる。				列による	行列の対角	角化が
		6週	1	8. 词 ,可制	可制御性②: 制御と不可制	別御性②:可制御性行列と行列のランクによる 8. 可制御性②:可制御性行 即と不可制御の判別について学ぶ。 8. 可制御と不可制御の判別が						
		7追]	項目:	5~8の復習			項目5~8をまと	めることが	できる		
		8週]			可制御性行列と行 御の判別について	列のランクによる 学ぶ。	8. 可制御性②: , 可制御と不可制			のランクに	こより
		9週	1	9. t 配置, 学ぶ。	<u>國配置法</u> :状 可制御正準	態フィードバック 形,アッカーマン	7, 直接法による極 法による極配置を	9. 極配置法:直, アッカーマン法 ック系を設計でき	による極配	極配置, で 記置により	可制御正準 状態フィ-	達形 - ドバ
		10	週	9. M 配置, 学ぶ。	可制御正準	態フィードバック 形,アッカーマン		配置法:直接法による極配置,可制御正準形 カーマン法による極配置により状態フィードバ を設計できる。				
		113	週	9. M 配置, 学ぶ。	可制御正準	態フィードバック 形,アッカーマン	7, 直接法による極 法による極配置を	9. 極配置法:直接法による極配置,可制御正準形 ,アッカーマン法による極配置により状態フィードバ ック系を設計できる。				
	lthQ	hQ 12週			サーボ系: 设計を学ぶ。	サーボ系の構造,	拡大系によるサー				慮して,拡	太大系
		13	週					サーボ系 <i>の</i> 計が出来る	ボ系の構造を考慮して, 拡大 出来る。			
		14			8~10の復	_			項目8~10をまとめることができる。			
		15							1 1. 最適レギュレータ:コスト関数を最小にする最 適制御の概念を説明できる。			
		16										
モデルコ	アカリ	<u>キュ</u>	ラムの	学習	内容と到達	直目標						
分類			分野		学習内容	学習内容の到達	目標			到達レベ	ル 授業	<u></u>
						自動制御の定義と種類を説明できる。				4		
						フィードバック制御の概念と構成要素を説明できる。				4		
						基本的な関数のラプラス変換と逆ラプラス変換を求めることができる。				4		
			機械系分野		計測制御	ラプラス変換と逆ラプラス変換を用いて微分方程式を解くことだ できる。			解くことが	4		
						伝達関数を説明できる。				4		
						ブロック線図を用いて制御系を表現できる。				4		
						制御系の過渡特性について説明できる。				4		
専門的能力	分野別 門工学	の専				制御系の定常特性について説明できる。				4		
	電気					制御系の周波数特性について説明できる。				4		
						安定判別法を用いて制御系の安定・不安定を判別できる。				4		
						伝達関数を用いたシステムの入出力表現ができる。 ブロック線図も Pro エンステムの入出力表現ができる。				4		
			電気・電子 系分野			ブロック線図を用いてシステムを表現することができる。				4		
						システムの過渡特性について、ステップ応答を用いて説明できる				4		
					制御	* システムの定常特性について、定常偏差を用いて説明できる。				4		
						システムの周波数特性について、ボード線図を用いて説明できる				4		
									<u></u>	4		
	1				<u> </u>	<u> フィー1・ハック</u>	ノハノムツタル刊だ	かねに ノい こ配明 じこ	<u>.</u> کا ه	1-		
評価割合	=_	₽ EΦ		24:		+D = = ± /=	能庇	- ₽ L	■用日 声	Ι.	∆≣↓	
₩△≕/≖剌/		<u> (験</u>		発表		相互評価	態度	ポートフォリオ	課題		合計 100	
総合評価割る				_			0	0	30		100	
基礎的能力 20			0		0	0	0	10		30		
専門的能力 40			0		0	0	0	15		55		
分野横断的能	能力 1	U		0		0	0	0	5	.	15	