高/	和工業高等	等專門学校	開講年度	令和03年度(2021年度)	授	業科目	物理化学 I	
相基	礎情報				-				
目番号		T3046			科目区分		専門 / 必	修	
業形態	Ŕ	講義			単位の種別と単	位数	履修単位	: 1	
設学科	4	SD 新素	材・生命コース	対象学年	3				
設期		後期			週時間数	2			
科書/	教材	化学」 参考書	: 田中潔・荒井貞	夫「フレ	<u> ノンドリー</u>	物理化学」(三共出版)			
⊒当教員	-	中林 浩修	ž Ž						
引達日									
2. 物質 3. 気体 4. 実在	閏量とそれに 質の三態およ はの分子運動 E気体の方程	びその相互変 論を知り,速 式の導出と計	明でき,物理化学の 化について説明でき 速分布や平均速度を 算ができる。 説明でき,熱と仕事	きる。 注説明できる。					
レーブ	リック								
			理想的な到達レ	ベルの目安	標準的な到達レ	ベルの目	 ∃ 安	未到達レベルの目安	
平価項目	1		SI基本単位およびSI組み立て単位SI基本		SI基本単位およ を説明できる	iI基本単位およびSI組み立て単位 ☑説明できる		Z SI基本単位とそれに伴う様々ない位を理解していない	
評価項目	12		物質の状態とその と原因を説明で	の相互変化の現象 きる。	想象 物質の状態とその相互変化の現象 を説明できる。		物質の状態とその相互変化を説明 できない		
評価項目	13		想気体と実在気候	論が説明でき,理 本の状態方程式のった計算ができる	理想気体と実在の導出とそれをる。	在気体の状態方程式 を使った計算ができ		理想気体と実在気体の状態方程式 を使った計算ができない	
評価項目4			熱力学第一法則の , 様々な条件の 収支が計算できる	下でのエネルギー	熱力学第一法則を理解し、状態変化に伴う内部エネルギーや仕事, 熱を計算で求めることができる。			を 熱力学第一法則を理解し、状態3 化に伴う内部エネルギーや仕事 、熱を計算で求めることができた	
 学科の	到達目標	項目との関]係		•			•	
	<u></u> 育到達度目								
教育方	法等	. ,							
概要		物理化学 し,気体 ついての	は,化学および応用 を本質から理解し, 基本的事項を学習す	化学分野における さらに物質の状態 ることによって,	専門基礎科目の中 変化に伴う仕事や 化学技術者として	の重要だれる エネル・ の専門的	な科目の 1 ギー変化, 的基礎知識	l つである。物質の状態を正しく把握 および化学反応に伴う反応熱などに 戦を習得する。	
授業の進	態め方・方法		内容を中心に講義し ら進める。	、各章ごとに演習	を取り入れ、必要	に応じ	て随時課題	風や小テストを行い、理解度をチェッ	
注意点	屋性 • 	試験価間では、一部では、一部では、一部では、一部では、一部では、一部では、一部では、一部	の平均,学年の評価 後学別中門の評価は 後学とし習り は事後学習に重点を まを課し、 題を課意し の注意と 算をすることが多い	版は前学期と後学期は前学期中間、前学期中間、前学 で対する達成度を に置いている。 でいな内容の小テス	の評価の平均とす 期末,後学期中間 試験等において評 トを実施する。	る。 の各期 価する。	間の評価の	る。学期毎の評価は中間と期末の各類 D平均とする。技術者が身につける^	
	<u> </u> 馬 エ・ 俊 ティブラー:		□ ICT 利用		□□ 遠隔授業対応	-		 □ 実務経験のある教員による授	
	<u> </u>					7,		□ 大物性歌ののおれてよるは	
 受業計	·								
ᄎ		週	授業内容			调ブレ		響	
		1週	が ◇物理化学の目的と役割および物質のとらえ ◇単位と基礎用語:SI単位系,基本的な物理 ◇物質の三態,状態変化,状態図,臨界点 ◇理想気体の各種法則の演習		とらえ方		業での物! とそれに(を正しく(かが分野の役割と重要性を理解す う単位を説明でき,物理化学の基 用できる びそれらの相互変化について説明	
		2週				純物質の状態図と		臨界点の特徴を説明できる 各種法則を利用する各種演習問題	
後期	3rdQ		◇実在気体の状態方程式			解けるようになる。 実在気体の状態方程式の導出とその説明ができ		る。 方程式の導出とその説明ができる	
	3.32	3週		〉ファンデルワールスの式の導出 〉ファンデルワールス式およびビリアル 5演習		ファン の計算	ファンデルワールス式およびビリアル方程式を使っ の計算ができる。		
		4週	〉理想気体の分子運動論 〉理想気体の速度分布と平均速度			理想気体のモデルを説明でき,分子運動論から 式を導出できる 平均速度を説明でき,計算できる		,	
		5週	◇化学熱力学に関係する系の考え方 ◇仕事と熱,熱と平衡			系と外	系と外界の関係,および系の準静的過程による変 ついて説明できる		
		6週	◇熱容量と比熱		執突量				

熱容量, 比熱を区別して計算できる

6週

◇熱容量と比熱

				∖先+ -	5学生 注明	エネルギー収支と熱力学第・	 −法則を説明で	 ごきる		
		7週			カ学第一法則 王・定積変化	「一」 「定用お上が定籍変化における」	3系と外界の熱	た仕事の出		
		8週			態量 ンタルピー	状態量が何かを説明できる				
		9週			マなエンタル	ピー 様々なエンタルピーの種類	様々なエンタルピーの種類を説明できる。			
		10ì	10週 🔷 🔷 🖴		態変化とエン	タルピー 状態変化とエンタルピー変 、これに基づいた化学量論	状態変化とエンタルピー変化を関係づけることができ , これに基づいた化学量論計算ができる。			
	4thQ	11ì	1週 🔷 🔿		スの法則	づいた熱量計算ができる。名	エンタルピー変化のデータをもとに、ヘスの法則に基づいた熱量計算ができる。各種標準エンタルピー変化を利用した熱量計算ができる			
		12ì	2週 ◇へご		スの法則	エンタルピー変化のデータ ² づいた熱量計算ができる。 を利用した数量計算ができる。	エンタルピー変化のデータをもとに、へスの法則に基づいた熱量計算ができる。各種標準エンタルピー変化を利用した熱量計算ができる			
		13ì			集状態と標準	標準生成エンタルピーがどび 生成エンタルピー 理解できる。標準生成エンク	標準生成エンタルピーがどのようにして決定されたか 理解できる。標準生成エンタルピーからの反応エンタ ルピーの計算ができる			
		14ì			 ご熱の温度依	反応熱の温度依存性に関する	反応熱の温度依存性に関するキルヒホッフの法則解し、化学量論計算に活用できる。			
		15ì	15週 🗘		ラウジウス・	クラウジウス・クラペイロン	クラウジウス・クラペイロンの式を用いて,減圧下の 沸点計算,目標の沸点までの圧力計算ができる。			
		16ì	16週			ormaly if an expense				
モデルコス	アカリキ	-그=	ラムのき	学習	内容と到達	達 目標				
分類			分野		学習内容	学習内容の到達目標	到達レベル			
						原子や分子の熱運動と絶対温度との関連について説明できる。	4	後7,後8		
						物体の熱容量と比熱を用いた計算ができる。	4	後12		
						熱量の保存則を表す式を立て、熱容量や比熱を求めることができる。	4	後12		
基礎的能力	白紐扒当	÷	#⁄mI⊞		赤加	動摩擦力がする仕事は、一般に熱となることを説明できる。	4	+		
圣 诞 时 化 力	日然代子	-	物理 		熱	ボイル・シャルルの法則や理想気体の状態方程式を用いて、気体 の圧力、温度、体積に関する計算ができる。	4			
						切圧力、 個長、 体質に関する計算が	4	後12		
						熱力学第一法則と定積変化・定圧変化・等温変化・断熱変化につ	+	後13		
						いて説明できる。 σ結合と⊓結合について説明できる。	2	1813		
						記成軌道を用い物質の形を説明できる。	2			
					有機化学	ルイス構造を書くことができ、それを利用して反応に結びつけることができる。				
						主量子数、方位量子数、磁気量子数について説明できる。	2			
	分野別の専門工学		専 化学・生物 系分野		無機化学	電子殻、電子軌道、電子軌道の形を説明できる。	2			
						パウリの排他原理、軌道のエネルギー準位、フントの規則から電子の配置を示すことができる。				
						価電子について理解し、希ガス構造やイオンの生成について説明できる。	2			
						元素の周期律を理解し、典型元素や遷移元素の一般的な性質を訪 明できる。	2			
						イオン化エネルギー、電子親和力、電気陰性度について説明できる。	3			
ı						イオン結合と共有結合について説明できる。	2			
						基本的な化学結合の表し方として、電子配置をルイス構造で示す ことができる。	3			
専門的能力						金属結合の形成について理解できる。	2			
כלמטנהנ ובא						結晶の充填構造・充填率・イオン半径比など基本的な計算ができる。	2			
						配位結合の形成について説明できる。	3			
						水素結合について説明できる。	3			
						気体の法則を理解して、理想気体の方程式を説明できる。	4			
					物理化学	気体の分子速度論から、圧力を定義して、理想気体の方程式を記 明できる。	4	後7		
						実在気体の特徴と状態方程式を説明できる。	4	後9		
						臨界現象と臨界点近傍の特徴を説明できる。	4	後5		
						混合気体の分圧の計算ができる。	4	+		
						純物質の状態図(P-V、P-T)を理解して、蒸気圧曲線を説明できる。	4			
						熱力学の第一法則の定義と適用方法を説明できる。	4			
						エンタルピーの定義と適用方法を説明できる。	4			
						化合物の標準生成エンタルピーを計算できる。	4			
						エンタルピーの温度依存性を計算できる。	4			
						内部エネルギー、熱容量の定義と適用方法を説明できる。	4	後13		
評価割合										
				<u>≣</u> +†		その他(小テスト 理題等) 合計				

その他(小テスト, 課題等)

合計

試験

総合評価割合	95	5	100
基礎的能力	55	5	60
専門的能力	30	0	30
分野横断的能力	10	0	10