ク 紹		等専門学校	交 開講年度	平成30年度 (2)018年度\	担	 登業科目	応用物理 I			
<u> </u>		牙子门子化	X	十/304/支 (2	2010平皮)	ענ ן	(未付口	心用初生 1			
14日 <u>季以</u> 4日番号	EIĦŦK	3A08		- FNI			目区分 専門 / 必修				
<u>オロ田 5</u> 受業形態		講義					単位の種別と単位数 履修単位: 2				
文架///巡 開設学科		機械工学	 ^丝 科				対象学年 3				
記 引設期		通年	-17	週時間数 2							
数科書/教	 材		総合物理2(数研片				リードa 物理基礎・物理(数研出版)				
<u>※11-10/3×</u> ∃当教員	1.5	原田豊瀬	100 E 175 E = 1,50 T 7 T E								
 到達目標	<u> </u>	MAI 111									
1. 波動 <i>0</i> 2. 波動 <i>0</i>	D基礎的なP D具体的なP	内容が理解で 問題を解くこ な内容が理解	ことができる。								
レーブリ	<u> </u>										
			理想的な到達レ	標準的な到達レ	ベルの]安	未到達レベルの目安				
平価項目1	-		波動の基礎的な。	波動の基礎的な内容をおおよそ理解できる。			波動の基礎的な内容が理解できて いない。				
平価項目2	<u>-</u>		波動の具体的な問題を解くことができる。		基本的な波動の具体的な問題を解 くことができる。		は問題を解	波動の具体的な問題を解くことが できない。			
平価項目3	3		放射線の基礎的 る。	放射線の基礎的な内容をおおよそ 理解できる。		をおおよそ	放射線の基礎的な内容が理解でき ていない。				
学科の至]達目標項	頁目との関	月 係								
教育方法	 5等										
既要		2 年生の	物理で学んだ基礎的な知識をもとにして、波動、および放射線等について学ぶ。また論理的な思考力を養成す								
授業の進め方・方法 容の理解(だけ自分・			は、教科書に沿って授業を行う。物理は、概念を直観的にとらえることが重要であるので、教科書や板書の内 に努めるとともに、具体的な問題を自分で解く必要がある。したがってレポート等で課された問題は、できる で考えて提出すること。またレポートは、期限を過ぎたものは受け取らない。さらに私語が多いなど受講とみ 場合や他の学生の妨げとなる受講態度の場合は、早退として取り扱う。								
主意点		1) 70%	ら、レポート30%:	とする。ただし定期	試験を受験しなカ	かった場	合は、レオ	中間試験を均等に評価する ポート点は0点とする。再試は必要に 。 評価基準:60点以上を合格とする			
受業計画	<u> </u>										
		週	授業内容	週ごとの到達目標							
	1stQ	1週	皮動、波の発生		振動の伝達で)伝達である	であることを理解できる。			
		2週			波長、振動数、周昇		振動数、周	朝、位相などについて理解できる。			
		3週	重ね合わせの原理1		重ね合わせについる		わせについ				
		4週	重ね合わせの原理 2			重ね合わせについて、具体的な問題を解くる。					
		5週	波の干渉			強めあう条件と弱めあう条件を理解できる。					
		6週	定常波1				定常波ができるメカニズムを図と数式の両面から呼できる。				
		7週	定常波2				定常波の形状ともとの波の波長の関係を理解できる。				
		8週	波の屈折1			1	波の屈折について、理解できる。				
					_	屈折の法則を用いて、具体的な問題を解くことができ					
55 9週		波の屈折2			IZ						

		2週	波の要素	波長、振動数、周期、位相などについて理解できる。				
		3週	重ね合わせの原理1	重ね合わせについて、理解できる。				
	1stQ	4週	重ね合わせの原理 2	重ね合わせについて、具体的な問題を解くことができる。				
		5週	波の干渉	強めあう条件と弱めあう条件を理解できる。				
		6週	定常波1	定常波ができるメカニズムを図と数式の両面から理解 できる。				
		7週	定常波2	定常波の形状ともとの波の波長の関係を理解できる。				
		8週	波の屈折1	波の屈折について、理解できる。				
前期	2ndQ	9週	波の屈折2	屈折の法則を用いて、具体的な問題を解くことができる。				
		10週	波の回折	回折について、説明できる。				
		11週	音波と弦の振動	定常波の一つであることを理解し、具体的な問題を解 くことができる。				
		12週	気柱の振動	定常波の一つであることを理解し、具体的な問題を解 くことができる。				
		13週	ドップラー効果1	音源または観察者が動く場合のドップラー効果を理解 できる。				
		14週	ドップラー効果 2	音源と観察者が動く場合のドップラー効果を理解し、 具体的な問題を解くことができる。				
		15週	ドップラー効果 3	音波が反射する場合のドップラー効果について、説明 することができる。				
		16週						
	3rdQ	1週	光の速さ	光の速さの測定の歴史を理解し、真空中の光速を覚え ている。				
後期		2週	偏光	光波の振動方向とそれが制限された偏光について、説 明できる。				
		3週	光の反射	反射の法則を理解し、問題を解くことができる。				
		4週	光の屈折1	屈折の法則が光にも適用できることを理解し、問題を 解くことができる。				
		5週	光の屈折2	相対屈折率を絶対屈折率から求めることができる。				
		6週	全反射	全反射について理解し、臨界角を求めることができる。				
		7週	光のスペクトル	光の色が波長の違いに基づくことを説明できる。				
		8週	光の散乱	光の散乱およびそれにより起こる現象を説明すること ができる。				

### ### ### ### ### ### ### ### ### ##			9週	光の分				光の振動数による	出折率の遺		対起こること	
11週 ヤングの実験1			<u> </u>	76027	が取り			を説明できる。				
4thQ 12週 回折格子 回折格子 回折格子の構造とその作用およびヤングの実験と同様 の現象が起こるごとを理解できる。 放射線とその性質 1 放射線の種類 性質、強度、生物への影響について説明できる。 放射線の種類 性質、強度、生物への影響について説明できる。 放射線の再類 大きができる。 放射線の再類 大きができる。 放射線の再列 放射線の再列 放射線の運業への利用について事例を挙げて説明する とができる。 対理 が関 学習内容 学習内容の到達目標 対理 が関 対理 が関 が関 が関 が関 が関 が関 が関 が			10週	ヤングの実験1								
### 4th Q			11週	ヤン	グの実験2	ヤングの実験による波長の			る波長の計	†算方法が説明できる。		
14週 放射線の利用 放射線の種類、性質、強度、生物への影響について説明できる。		łthO	12週	回折								
15週 放射線の利用 放射線の産業への利用について事例を挙げて説明する 広とかできる。	7010		13週	放射約	射線とその性質 1			放射性同位体と放射	肘能、放射	排線について	説明できる。	
1532		1		放射網								
モデルコアカリキュラムの学習内容と到達目標 対野 学習内容 学習内容の到達目標 波の振幅、波長、周期、振動数、速さについて説明できる。 3 前4 前3 前3 減の重ね合わせの原理について説明できる。 3 前3 前3 減の無値、波氏・周期、振動数・速さについて説明できる。 3 前4 前5 減の重ね合わせの原理について説明できる。 3 前3 減の独立性について説明できる。 3 前5 減の独立性について説明できる。 3 前5 減の独立性について説明できる。 3 前5 減の独立性について説明できる。 3 前6 減の疾動のようすなど)を説明できる。 3 前6 減の反射の法則、屈折の法則、および回折について説明できる。 3 前8,前10 減の反射の法則、屈折の法則、および回折について説明できる。 3 前8,前9,前 10 10 10 10 10 10 10 10				放射約	汝射線の利用							
分野 学習内容 学習内容 学習内容の到達目標 接換 接換 接換 接換 接換 接換 接換 接								-				
液の振幅、波長、周期、振動数、速さについて説明できる。 3 前2 横波と縦波の違いについて説明できる。 3 前3 前3 前4 液の強立性について説明できる。 3 前3 前3 前3 液の独立性について説明できる。 3 前3 前3 前3 京の独立性について説明できる。 3 前3 前3 1 1 1 1 1 1 1 1 1	モデルコアカリキュラムの学習内容と到達目標											
横波と縦波の違いについて説明できる。 3 前4 液の重ね合わせの原理について説明できる。 3 前3 前3 前4 液の重ね合わせの原理について説明できる。 3 前3 前3 前3 液の独立性について説明できる。 3 前3 前5 元十へンスの原理について計算できる。 3 前6 市4 市4 市4 市4 市4 市4 市4 市	分類		分野		学習内容					到達レベ	レ 授業週	
接換の重ね合わせの原理について説明できる。						波の振幅、波長、周期、振動数、速さについて説明できる。					前2	
接続の株立性について説明できる。						横波と縦波の違いについて説明できる。					前4	
全域の特徴(節、腹の振動のようすなど)を説明できる。 100						波の重ね合わせの原	原理について説明	できる。		3	前3	
上の						波の独立性について説明できる。					前3	
基礎的能力 物理 次動 液の反射の法則、屈折の法則、および回折について説明できる。 3 前8,前10 弦の反射の法則、屈折の法則、および回折について説明できる。 3 前8,前9,前10 弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。 3 前8 気柱の長さと音速から、開管、閉管の固有振動数を求めることができる。(開口端補正は考えない)。 3 前11 上振、共鳴現象について具体例を挙げることができる。 3 前13,前11 一直線上の運動において、ドップラー効果による音の振動数変化まできる。 3 後2 光の反射角、屈折角に関する計算ができる。 3 後3,後4 液長の違いによる分散現象によってスペクトルが生じることを説明できる。 3 後3,後4 水長の違いによる分散現象によってスペクトルが生じることを説明できる。 3 後7 評価割合 70 0 0 0 0 0 0 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 10 30 100											前5	
基礎的能力 物理 波動 液の反射の法則、屈折の法則、および回折について説明できる。 3 前8,前9,前10 弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。 気柱の長さと音速から、開管、閉管の固有振動数を求めることができる。同日端補正は考えない)。 共振、共鳴現象について具体例を挙げることができる。 3 前11 土振、共鳴現象について具体例を挙げることができる。 3 前13,前14,前15 自然光と偏光の違いについて説明できる。 3 後2 光の反射角、屈折角に関する計算ができる。 3 後3,後4 波長の違いによる分散現象によってスペクトルが生じることを説 3 後3,後4 波長の違いによる分散現象によってスペクトルが生じることを説 3 後7 評価割合 70 0 0 0 0 10 50 基礎的能力 40 0 0 0 0 10 50 10 専門的能力 20 0 0 0 0 10 30 100					波動	定常波の特徴(節、腹の振動のようすなど)を説明できる。					前6	
基礎的能力 物理 波動 液の反射の法則、屈折の法則、および回折について説明できる。 3 前8,前9,前10 弦の長さと弦を伝わる波の速さから、弦の固有振動数を求めることができる。 気柱の長さと音速から、開管、閉管の固有振動数を求めることができる。同日端補正は考えない)。 共振、共鳴現象について具体例を挙げることができる。 3 前11 土振、共鳴現象について具体例を挙げることができる。 3 前13,前14,前15 自然光と偏光の違いについて説明できる。 3 後2 光の反射角、屈折角に関する計算ができる。 3 後3,後4 波長の違いによる分散現象によってスペクトルが生じることを説 3 後3,後4 波長の違いによる分散現象によってスペクトルが生じることを説 3 後7 評価割合 70 0 0 0 0 10 50 基礎的能力 40 0 0 0 0 10 50 10 専門的能力 20 0 0 0 0 10 30 100						ホイヘンスの原理について説明できる。					前8,前10	
「			《科学 物理			波の反射の法則、屈折の法則、および回折について説明できる。						
大振、共鳴現象について具体例を挙げることができる。	基礎的能力	自然科学									前8	
一直線上の運動において、ドップラー効果による音の振動数変化 3 前13,前 14,前15 を求めることができる。 3 後2 光の反射角、屈折角に関する計算ができる。 3 後2 光の反射角、屈折角に関する計算ができる。 3 後3,後4 液長の違いによる分散現象によってスペクトルが生じることを説 3 後7 評価割合						気柱の長さと音速から、開管、閉管の固有振動数を求めることができる(開口端補正は考えない)。					前11	
を求めることができる。 3 14,前15 自然光と偏光の違いについて説明できる。 3 後2 光の反射角、屈折角に関する計算ができる。 3 後3,後4 波長の違いによる分散現象によってスペクトルが生じることを説明できる。 3 後7 評価割合 発表 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 0 0 0 30 100 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 0 10 30						共振、共鳴現象について具体例を挙げることができる。				3	前11	
光の反射角、屈折角に関する計算ができる。 3 後3,後4 評価割合 試験 発表 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 0 0 0 30 100 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 10 30										3		
波長の違いによる分散現象によってスペクトルが生じることを説明できる。 3 後7 評価割合 試験 発表 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 0 0 0 30 100 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 10 30						自然光と偏光の違いについて説明できる。				3	後2	
波長の違いによる分散現象によってスペクトルが生じることを説明できる。 3 後7 評価割合 試験 発表 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 0 0 0 30 100 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 10 30						光の反射角、屈折角に関する計算ができる。				3	後3,後4	
試験 発表 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 0 0 0 0 30 100 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 10 30						波長の違いによる分散現象によってスペクトルが生じることを説					後7	
試験 発表 相互評価 態度 ポートフォリオ その他 合計 総合評価割合 70 0 0 0 0 30 100 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 10 30	評価割合											
総合評価割合 70 0 0 0 0 30 100 基礎的能力 40 0 0 0 0 10 50 専門的能力 20 0 0 0 10 30	試験		 矣	発表		相互評価	態度	ポートフォリオーその他		2	\alpha = \frac{1}{2}	
専門的能力 20 0 0 0 10 30												
	基礎的能力 40			0		0	0	0 10		50		
	専門的能力 20		0					0 10		3	0	