久留米工業高等専門学校		開講年度	平成29年度 (2	1017年度)	授業科目	電気・電子工学概論			
科目基礎情報									
科目番号	0256			科目区分	専門 / 必	専門 / 必修			
授業形態	講義			単位の種別と単位数	效 履修単位	履修単位: 2			
開設学科	機械工学科			対象学年					
開設期	通年			週時間数					
教科書/教材	教科書:伊理正夫 監修 「電気・電子概論」 実教出版 参考書:押本愛之介、岡崎彰夫 共著 「電気・電子工学概論」 森北出版								
担当教員	掛橋 英典								
到達目標									

- 1. 電気電子工学に関する基礎知識を習得する。 2. 簡単な電気回路、電子回路の動作を理解する。 3. 機械工学における電気電子工学の応用について理解する。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
電気電子工学に関する基礎知識	基礎知識が十分得られている	基礎知識の要点は得られえている	基礎知識が得られえている
電気回路、電子回路の動作	動作を十分に理解している	基本的な動作について理解している	基本的な動作を理解していない
機械工学への応用	応用について十分に理解している	応用について概要は理解している	応用について概要も理解していない

学科の到達目標項目との関係

JABEE C-5

教育方法等

概要	電気電子工学の分野のみならず、機械工学においても電気電子工学に関する知識は必要である。本科目では、電気電子 工学における基礎理論(電気回路や電気磁気学)を出発点として、半導体を含む電子回路の基本,誘導電動機等電気機 器の動作原理,電気計測器の動作原理と使用法などについて学ぶ。
授業の進め方・方法	主に板書により授業を進める。また、適宜、演習問題を配布し、それまでの講義の内容の復習を行う。
注意点	前期,後期ともに中間と期末の定期試験を100点法で行う。定期試験後再試を行うことがある。定期試験の平均点(80%)と課題(20%)で評価し60点以上を合格とする。

		曲	

授業計	<u> </u>			
		週	授業内容	週ごとの到達目標
		1週	電流と電圧,直流と交流	電気の諸量,単位について理解できる
		2週	オームの法則	オームの法則を用いて 抵抗計算ができる
		3週	電圧降下, ホイートストンブリッジ	電圧降下, ブリッジに関する問題を解くことができる
	1stQ	4週	キルヒホッフの法則	キルヒホッフの法則を用いて諸量を計算できる
		5週	電気抵抗,消費電力,ジュール熱	消費電力, ジュール熱を導出できる
		6週	まとめ	これまでの学習のまとめと復習
		7週	磁気クーロン則	磁気クーロン則を用いて諸量を計算できる
		8週	磁界と磁束	磁界と磁束を説明できる
前期		9週	電流と磁界,電磁力	アンペールの法則を用いて磁界を導出でき電磁力を説 明できる
		10週	ファラデーの法則	ファラデーの法則を理解し起電力を計算できる
		11週	インダクタンス、磁気エネルギー	インダクタンスの定義と磁気エネルギーを説明
	2ndO	12週	電気クーロン則	電気クーロン則を用いて諸量を計算できる
	ZIIUQ	13週	電界と電束,電位	電界と電束,電位の定義を説明でき計算できる電気ク ーロン則を用いて諸量を計算できる
		14週	静電容量,静電エネルギー	静電容量の定義と静電エネルギーを説明できる
		15週	まとめ	これまでの学習のまとめと復習
		16週		
		1週	交流現象	交流現象と周波数,周期,波長を説明できる
		2週	正弦波交流回路	瞬時値,実効値と交流表記について説明できる
		3週	RLC回路	RLC回路の諸量を計算できる
		4週	交流電力	交流電力を計算できる
	3rdQ	5週	三相交流	三相交流について説明できる
		6週	誘導電動機	三相誘導電動機における回転磁界と回転原理を説明できる
		7週	まとめ	これまでの学習のまとめと復習
後期		8週	半導体およびダイオードとトランジスタ	半導体とその種類,ダイオードとトランジスタの構造と動作原理を説明できる
		9週	バイアスと増幅回路	トランジスタのバイアス回路と低周波増幅基本回路を 計算できる
		10週	電力増幅回路	A級, B級各増幅回路を説明できる
	4thQ	11週	電源回路	整流回路の動作が説明でき諸量を導出できる
	Tuly	12週	オペアンプ	反転, 非反転増幅回路, 演算回路を説明できる
		13週	電気計測の基礎	アナログ計器の動作原理について説明できる反転,非 反転増幅回路,演算回路を説明できる
		14週	各種計測器	テスタ, オシロスコープ等の実用計器を理解できる

		15週 まとめ			b	これまでの学習のまとめと復習					
		16ì	周								
モデルコアカリキュラムの学習内容と到達目標											
分類 分野			学習内容	学習内容の到達目標			到達レベル	レ 授業週			
						計測の定義と種類を説明できる。					後13,後14
 専門的能力	分野	分野別の専 門工学	機械系分野	和	 計測制御	測定誤差の原因と種類、精度と不確かさを説明できる。				2	後13,後14
会! 103能力	門工	門工学 17) דו		国際単位系の構成を理解し、SI単位およびSI接頭語を説明できる。					後13,後14
評価割合											
試験		発	表	相互評価	態度	ポートフォリオ	課題演習	슫	計		
総合評価割合 80			0		0	0	0	20 100		00	
基礎的能力 0		0		0	0	0	0	0			
専門的能力 80 (0		0	0	0	20	1	00		