久留米工業高等専門学校		開講年度	平成30年度 (2	018年度)	授業科目	電子通信実験	
科目基礎情報							
科目番号	5E17			科目区分	専門 / 必	修	
授業形態	実験・実習			単位の種別と単位数	数 履修単位	: 2	
開設学科	電気電子工学科			対象学年	5	5	
開設期	通年			週時間数	2	2	
教科書/教材	実験指導書を配付する。						
担当教員	山口 崇,ウリントヤ						
到達目標							

到连日倧

- 1.電子回路の機能と動作を測定し、実測データに基づいて動作を説明できる。2.通信・伝送回路の機能と動作を測定し、実測データに基づいて動作を説明できる。3.ディジタル技術を応用したシステムの機能と動作を理解し、設計・構築できる。

ルーブリック

	理想的な到達レベルの目安	標準的な到達レベルの目安	未到達レベルの目安
電子回路	実測データに基づいて機能と動作の高度な説明ができる。	実測データに基づいて機能と動作 の基本的な説明ができる。	実測データに基づいて機能と動作 を説明できない。
通信・伝送回路	実測データに基づいて機能と動作の高度な説明ができる。	実測データに基づいて機能と動作 の基本的な説明ができる。	実測データに基づいて機能と動作 を説明できない。
ディジタル技術応用システム	実測データに基づいて機能と動作の高度な説明ができる。	実測データに基づいて機能と動作 の基本的な説明ができる。	実測データに基づいて機能と動作 を説明できない。

学科の到達目標項目との関係

JABEE C-1 JABEE C-2 JABEE C-3

教育方法等

概要	電子通信技術の基盤となる電子回路や通信・伝送回路、及びディジタル技術を応用したシステムについて、機能の理解 及び設計・構築のための実験及びデータ解析の技術を習得する。
授業の進め方・方法	4人程度の小グループ単位で、共同で実験を実施する。 すべての実験項目を実施し、報告書を提出しなければならない。 報告書の提出期限は、当該実験題目の最終回の次の授業開始時とする。
注意点	報告書100%で評価する。 評価基準:60点以上を合格とする。未提出の報告書がある場合は不合格とする。
	遅刻、欠課(公欠を含む)の場合は追加実験で対応する。 報告書はそのまま評価されるので、十分に完成させて提出すること。

122 *** = 1 : 1

		週	授業内容	週ごとの到達目標
		1週	実験指導書の配付及び受講方法の説明	実験の進め方、報告書の作成方法を理解する。
		2週	《実験》 トランジスタ増幅器 (1)	トランジスタ増幅器の設計及び測定をする。
4.10		3週	《実験》トランジスタ増幅器(2)	トランジスタ増幅器の設計及び測定をする。
	1-10	4週	《実験》 トランジスタ増幅器 (3)	トランジスタ増幅器の設計及び測定をする。
	1stQ	5週	《実験》 演算増幅器 (1)	演算増幅器応用回路の設計及び測定をする。
		6週	《実験》 演算増幅器 (2)	演算増幅器応用回路の設計及び測定をする。
		7週	《実験》 演算増幅器 (3)	演算増幅器応用回路の設計及び測定をする。
前期		8週	再実験及び報告書指導 (1)	報告書の作成方法を理解する。
מאלוי		9週	《実験》 ディジタルIC (1)	ディジタルIC回路の設計及び測定をする。
		10週	《実験》 ディジタルIC (2)	ディジタルIC回路の設計及び測定をする。
		11週	《実験》 ディジタルIC (3)	ディジタルIC回路の設計及び測定をする。
	2ndQ	12週	再実験及び報告書指導 (2)	報告書の作成方法を理解する。
	znuQ	13週	《実験》 フィルタ (1)	フィルタ回路の設計及び測定をする。
		14週	《実験》 フィルタ (2)	フィルタ回路の設計及び測定をする。
		15週	《実験》 フィルタ (3)	フィルタ回路の設計及び測定をする。
		16週		
		1週	《実験》 変調・復調 (3)	変調・復調回路の設計及び測定をする。
		2週	《実験》 変調・復調 (2)	変調・復調回路の設計及び測定をする。
		3週	《実験》 変調・復調 (1)	変調・復調回路の設計及び測定をする。
	3rdQ	4週	再実験及び報告書指導 (3)	報告書の作成方法
	SiuQ	5週	《実験》 シーケンス制御 (1)	シーケンス制御の設計及び測定をする。
		6週	《実験》 シーケンス制御 (2)	シーケンス制御の設計及び測定をする。
		7週	《実験》 シーケンス制御 (3)	シーケンス制御の設計及び測定をする。
y期 -		8週	再実験及び報告書指導 (4)	報告書の作成方法
X 7 1J		9週	《実験》 HDLによる論理回路設計 (1)	HDLによる論理回路の設計及び測定をする。
	4thQ	10週	《実験》 HDLによる論理回路設計 (2)	HDLによる論理回路の設計及び測定をする。
		11週	《実験》 HDLによる論理回路設計 (3)	HDLによる論理回路の設計及び測定をする。
		12週	再実験及び報告書指導 (5)	報告書の作成方法
		13週	《実験》 HDLによる論理回路設計 (4)	HDLによる論理回路の設計及び測定をする。
		14週	《実験》 HDLによる論理回路設計 (5)	HDLによる論理回路の設計及び測定をする。
		15週	《実験》 HDLによる論理回路設計 (6)	HDLによる論理回路の設計及び測定をする。
	16週			

モデルコス	アカリキュ	ラムの学習	内容と到達			
分類		分野	学習内容	学習内容の到達目標	到達レベル	授業週
基礎的能力	工学基礎		工術方夕察学各法処方実種、理法)は技定一考	物理、化学、情報、工学における基礎的な原理や現象を明らかに するための実験手法、実験手順について説明できる。	4	前1,4 3,前6,前6,前前11,4 前前前前10,2,前前前前11,4 13,前前前15,後後後後後後後後後後後後後後後後後後後後後後後後後後後後 10,後後11,後後後11 12,後後11 14,後後15
				実験装置や測定器の操作、及び実験器具・試薬・材料の正しい取 扱を身に付け、安全に実験できる。	4	前2 前3 前4,前5 前4,前7,前10,前11,前13,前113,後2,後6,後後7,46,後6,後後7,46,後後11,後後11,後後11,後後15
				実験データの分析、誤差解析、有効桁数の評価、整理の仕方、考 察の論理性に配慮して実践できる。	4	前12前 3,前4,前 5,前6,前 7,前8,前前 11,前前前 11,前前前 15,後後後後 2,後後後後後 4,後後後後後 8,後後後後 8,後後後 8,後後 8,後後 8,
				実験テーマの目的に沿って実験・測定結果の妥当性など実験データについて論理的な考察ができる。	4	前2,前3,前6,前7,前14,前15,前14,前15,後13,後14,後13,代14,前15,後13,後14,後13,代14,前15,後14,後13,代14,前15,後14,後13,代14,後15,
				実験ノートや実験レポートの記載方法に沿ってレポート作成を実践できる。	4	前1,前2,前3,前6,前6,前6,前前6,前前9,前前10,前前11,前前12,後3,後83,後83,後83,後83,後83,在13,後11,前前15,後11,後2,後83,後214,後213,後213,後213,後213,後213,後213,6
				実験データを適切なグラフや図、表など用いて表現できる。	4	
				実験の考察などに必要な文献、参考資料などを収集できる。 実験・実習を安全性や禁止事項など配慮して実践できる。	4	
				個人・複数名での実験・実習であっても役割を意識して主体的に	4	
				取り組むことができる。 共同実験における基本的ルールを把握し、実践できる。	4	
				レポートを期限内に提出できるように計画を立て、それを実践で	4	
				きる。 バイポーラトランジスタの特徴と等価回路を説明できる。	4	
		電気・電子 系分野	電子回路	利得、周波数帯域、入力・出力インピーダンス等の増幅回路の基	4	
専門的能力	分野別の専 門工学			 使事項を説明できる。	4	
				演算増幅器の特性を説明できる。	4	
				演算増幅器を用いた基本的な回路の動作を説明できる。	4	
				変調・復調回路の特性、動作原理を説明できる。	4	

			計測	精度と誤差を理解し、有効数字・誤差の伝掘 処理が行える。	般を考慮した計測値の	4	
		情報系分野	計算機工	・ ハードウェア記述言語など標準的な手法を 設計、検証を行うことができる。	別いてハードウェアの	3	
				オシロスコープを用いて実際の波形観測が多	実施できる。	4	前2.前3.前 4.前5,前 6.前7,前 9,前10,前 11,前13,前 14,前15,後 1,後2,後3
				電気・電子系の実験を安全に行うための基本	卜知識を習得する。	4	前1
	分野別の工 学実験・実	電気・電子実務・実習能力】	電気・電子 系【実験実 習】	増幅回路等(トランジスタ、オペアンプ)の重を考察できる。	か作に関する実験結果	4	前2,前3,前 4,前5,前 6,前7
習能	習能力			論理回路の動作について実験結果を考察でき	క ెం.	4	前9,前 10,前11,後 5,後6,後 7,後9,後 10,後11,後 13,後14,後
				トランジスタの電気的特性の測定法を習得し、その実験結果を考察できる。		4	
				ディジタルICの使用方法を習得する。		4	
評価割合							
			‡	3 告書	合計		
総合評価割合			1	00	100		
専門的能力			1	00	100		