10日世紀		等専門学校	交 開講年度	平成30年度(2018年度)	授	業科目 7	有機金属 [。]	化学		
	楚情報										
科目番号		4C07			科目区分		専門 / 必修	<u> </u>			
受業形態		講義			単位の種別と単	位数	履修単位:	1			
開設学科		生物応用			対象学年		4				
開設期		前期			週時間数		2				
数科書/教	材	教科書: 同人	有機金属化学ノ	ノーツ、伊東卓 著、	裳華房。参考書:	有機会	金属反応剤ノ	ハンドブック	フ、玉尾館	評 著、化学	
旦当教員		石井 努									
到達目標	 										
1.金属 2.触媒 3.有機 ルーブリ	金属錯体の	する有機合成 知識を理解で 触媒作用を記	找知識を習得する。 ごきる。 礼明できる。								
<u>レーフ:</u>			理想的が到達		煙進的が到達し	ベルのE	 3 <i>字</i>	未到達レ	ベルの日芽		
	理想的な到達レベルの目安 標準的な到達レベルの目安 典型金属元素が関金属元素が関与 全属元素が関与する有機会は知識										
平価項目1			する有機合成る。	知識を十分理解でき					記元素が関与する有機合成知語 理解できない		
平価項目2	2		触媒反応の基 きる	礎知識を十分理解で	知識を理解できる 触媒反応			の基礎知識を理解できた			
評価項目3	3		有機金属錯体 明できる				D触媒作用を説明で 有機金属錯体の触媒作用を訪 きない			ま作用を説明で 	
 学科の3	到達目標耳	頁目との関	 月係							<u> </u>	
IABEE C-		- 1-									
教育方法											
既要	اد من				属が関与する有機	合成反 原	む、及び有機	(金属錯体が	が関与する	5有機触媒反応	
				ノている。 する。授業内容を白板	に板書し、またけ	プロミジ-	 r クターで#	<u></u> 別りして ネ		しいて説明する	
- w								(A) () (((こりいりにし	へ・このいろうる	
受業の進む	め方・方法	有機反応 有機金属 理解力を	「機構を埋解するだ 『化合物の触媒作用 ・深めるために、領	こめに、反応の説明で 月を理解するために、 野回小テストを行う。	は電子移動を矢り 触媒サイクルによ 再に一適宜演習を	」で示す。 る説明な そう	を行う。				
主意点		すでに受中間試験	講した関連科目	 (無機化学、有機化学 	・)の基礎知識を必	要とする	る。 から評価す	「る。再試験	食は必要に	応じて行う。	
受業計画	 <u>5</u>		- · · · · · · · · · · · · · · · · · · ·								
~~~	Ī	週	授業内容			调ごと	 の到達目標				
		1週		 ョン – 有機金属試薬		有機金属試薬を知る					
		2週	有機マグネシウム		有機マグネシウムの反応を理解する						
		3週	有機リチウムの原			有機リチウムの反応を理解する					
		4週	有機亜鉛、有機		有機亜鉛、有機アルミニウムの反応を理解する						
	1stQ	5週	有機ケイ素化合物		有機ケイ素化合物の反応を理解する				±n+ 9 0		
		6週	有機リン化合物の		有機リン化合物の反応を理解する						
		7週	+								
		8週	有機ホウ素化合物の反応			有機ホウ素化合物の反応を理解する					
		9週	前半のまとめ 遷移金属錯体と触媒作用			上記内容の理解度を確認し、前期後半授業に繋げる 遷移金属錯体とその触媒作用を知る					
前期		10週	+	 対の構造−d軌道、1	. 8電子則、配位						
		11週	<u>丁</u>  触媒サイクル 1 ·		 触媒サイクルにおける配位過程を			程を理解で	 『を理解する		
	2ndQ	12週	触媒サイクル2・		触媒サイクルにおける挿入過程を理解す						
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	一種							
		13週	触媒サイクル3・	以优酷	理解する 触媒サイクルにおける求電子・求核攻撃過程を理						
		14週	触媒サイクル4・		放送サイクルにおける金属交換過程を理解する						
		16週	全体のまとめ								
<u> </u>						一日"成亚	ᄪᅋᄺᄱᄼᆟᄼ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ᆂᅒᆉᅜᄯᆁ	正言 プロ	
	コグルリー	<u>トユフム()</u> 分野	)学習内容と到 学習内容	送日信 学習内容の到達目					到徳しが	ル 授業週	
<u>分類</u>		ノゾ王ゾ		子省内谷の到達自標   有機物が炭素骨格を持つ化合物であることを説明できる。   代表的な官能基を有する化合物を含み、IUPACの命名法に基づき			<u>到達レハ</u> 4	前1.前2.1			
								3,前4,前 5,前6,前7			
				、構造から名前、名前から構造の変換ができる。		バで扱うの	3	前1			
			· 生物 有機化学	σ結合とπ結合について説明できる。			3	前1			
<b>郭門的能</b> ;	カー分野別の	の専一化学・	ェ ^{生物} │有機化学								
<b>評門的能</b> 定	カ 分野別の門工学	の専 化学・ 系分野	· ^{生物}  有機化学 ・ · ·	混成軌道を用い物		る。			3	前1	
<b>郭門的能</b> ;	カー分野別の門工学	の専 化学・ 系分野	, ^{生物} 有機化学		質の形を説明でき		で予測できる	0.0			
<b>專門的能</b> ;	力 分野別の門工学	D専 化学・ 系分野	,有機化学 一	混成軌道を用い物	質の形を説明でき 果を理解し、結合	の分極を		) 0	3	前1	

			1						
				共鳴構造につい	<b>\て説明できる。</b>			3	前1
				炭化水素の種類 明できる。	頁と、それらに関	する性質および代表	的な反応を説	3	前2,前3,前 4
				分子の三次元的 る。	りな構造がイメー	ジでき、異性体につ	いて説明でき	3	前2,前3
				構造異性体、うる。	ンスートランス異	性体、鏡像異性体な	どを説明でき	4	前2,前3,前 6,前7
				化合物の立体化	と学に関して、そ	の表記法により正し	く表示できる	3	前2,前3
				代表的な官能基	まに関して、その	構造および性質を説	明できる。	4	前2,前3,前 4,前5,前 6,前7
				それらの官能基を含む化合物の合成法およびその反応を説明できる。				4	前2,前3,前 4,前5,前 6,前7
				代表的な反応に	三関して、その反	応機構を説明できる	•	4	前2,前3,前 4,前5,前 6,前7
				重合反応について説明できる。				3	前11,前12
				錯体化学で使用される用語(中心原子、配位子、キレート、配位 数など)を説明できる。				3	前9,前10
			無機化学	配位数と構造について説明できる。				3	前9,前 10,前11,前 12,前13,前 14,前15
				代表的な元素の単体と化合物の性質を説明できる。					前9
評価割合				•					
	試験	発	表	相互評価	態度	ポートフォリ	オーその他		合計
総合評価割合	100	0		0	0	0 0			100
基礎的能力	50	0		0	0	0	0		50
専門的能力	40	0		0	0	0	0		40
分野横断的能力	10	0		0	0	0	0		10